Behavioural Equivalences for Co-operating Transactions

Matthew Hennessy

joint work with Vasileois Koutavas, Carlo Spaccasassi, Edsko de Vries

Concur, September 2015

Outline

Co-operating Transactions what are they?

TransCCS

Behaviour

History bisimulations

Property logics

STM: Software Transactional Memory

- Database technology applied to software
- concurrency control: atomic memory transactions
- lock-free programming in multithreaded programmes
- threads run optimistically
- conflicts are automatically rolled back by system

Implementations

► Haskell, OCaml, Csharp, Intel Haswell architecture

Issues

- ► Language Design
- ► Implementation strategies
- Semantics what should happen when programs are run

STM: Software Transactional Memory

- Database technology applied to software
- concurrency control: atomic memory transactions
- lock-free programming in multithreaded programmes
- threads run optimistically
- conflicts are automatically rolled back by system

Implementations:

Haskell, OCaml, Csharp, Intel Haswell architecture

Issues:

- Language Design
- Implementation strategies
- ► Semantics what should happen when programs are run

Standard Transactions on which STM is based

Transactions provide an abstraction for error recovery in a concurrent setting.

Guarantees:

- Atomicity: Each transaction either runs in its entirety (commits) or not at all
- Consistency: When faults are detected the transaction is automatically rolled-back
- ▶ Isolation: The effects of a transaction are concealed from the rest of the system until the transaction commits
- Durability: After a transaction commits, its effects are permanent

► Isolation:

- ► Higher levels limit concurrency
- Lower levels have implementation difficulties and precise semantic understanding

Standard Transactions on which STM is based

► Transactions provide an abstraction for error recovery in a concurrent setting.

Guarantees:

- Atomicity: Each transaction either runs in its entirety (commits) or not at all
- Consistency: When faults are detected the transaction is automatically rolled-back
- ▶ Isolation: The effects of a transaction are concealed from the rest of the system until the transaction commits
- Durability: After a transaction commits, its effects are permanent

► Isolation:

- ► Higher levels limit concurrency
- Lower levels have implementation difficulties and precise semantic understanding

Communicating/Co-operating Transactions

- ▶ We drop isolation completely:
 - There is no limit on the co-operation/communication between a transaction and its environment.
 - ▶ There is no barrier to concurrency
 - Understanding the behaviour of these new transactional systems is problematic
- Should guarantee:
 - Atomicity: Each transaction will either run in its entirety or not at all
 - Consistency: When faults are detected the transaction is automatically rolled-back, together with all effects of the transaction on its environment
 - ▶ Durability: After all transactions that have interacted commit, their effects are permanent (coordinated checkpointing)

Communicating/Co-operating Transactions

- We drop isolation completely:
 - There is no limit on the co-operation/communication between a transaction and its environment.
 - ▶ There is no barrier to concurrency
 - Understanding the behaviour of these new transactional systems is problematic
- Should guarantee:
 - Atomicity: Each transaction will either run in its entirety or not at all
 - Consistency: When faults are detected the transaction is automatically rolled-back, together with all effects of the transaction on its environment
 - ▶ Durability: After all transactions that have interacted commit, their effects are permanent (coordinated checkpointing)

Programming with Co-operating Transactions

Add to your favourite programming language:

- ▶ atomic[.....]
- commands commit and abort&retry

Example: three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

Problem

- \triangleright P_i process/transaction subject to failure
- Some coalition of three from P_1 , P_2 , P_3 , P_4 should decide to collaborate

Result

► Each *P_j* in the successful coalition outputs id of its partners on channel out_{*i*}

Programming with Co-operating Transactions

Add to your favourite programming language:

- ▶ atomic[.....]
- commands commit and abort&retry

Example: three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

Problem:

- \triangleright P_i process/transaction subject to failure
- ► Some coalition of three from *P*₁, *P*₂, *P*₃, *P*₄ should decide to collaborate

Result

► Each *P_j* in the successful coalition outputs id of its partners on channel out_{*i*}

Programming with Co-operating Transactions

Add to your favourite programming language:

- ▶ atomic[.....]
- commands commit and abort&retry

Example: three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

Problem:

- ▶ *P_i* process/transaction subject to failure
- ▶ Some coalition of three from P_1 , P_2 , P_3 , P_4 should decide to collaborate

Result:

► Each *P_j* in the successful coalition outputs id of its partners on channel out_{*i*}

Example: three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

Algorithm for P_n :

- ▶ Broadcast id *n* randomly to two arbitrary partners $b!\langle n \rangle \mid b!\langle n \rangle$
- Receive ids from two random partners b?(y).b?(z)
- ▶ Propose coalition with these partners $s_v!\langle n,z\rangle.s_z!\langle n,y\rangle$
- ► Confirm that partners are in agreement:
 - ▶ if YES, commit and report
 - ▶ if NO, abort&retry

Example: three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

Algorithm for P_n :

- ▶ Broadcast id *n* randomly to two arbitrary partners $b!\langle n\rangle \mid b!\langle n\rangle$
- ▶ Receive ids from two random partners b?(y).b?(z)
- ▶ Propose coalition with these partners $s_v!\langle n, z \rangle . s_z!\langle n, y \rangle$
- ► Confirm that partners are in agreement:
 - ▶ if YES, commit and report
 - ▶ if NO, abort&retry

Example: three-way rendezvous

$$P_1 || P_2 || P_3 || P_4$$

$$P_n \leftarrow b! \langle n \rangle \mid b! \langle n \rangle \mid$$
 $\mathtt{atomic} \llbracket b?(y) . b?(z) .$
 $s_y! \langle n, z \rangle . s_z! \langle n, y \rangle .$ proposing
 $s_n?(y_1, z_1) . s_n?(y_2, z_2) .$ confirming
 $\mathtt{if} \ \{y, z\} = \{y_1, z_1\} = \{y_2, z_2\}$
 $\mathtt{then} \ \mathtt{commit} \ \mid \mathtt{out}_n! \langle y, z \rangle$
 $\mathtt{else} \ \mathtt{abrt\&retry} \
Vert$

Co-operating Transactions: Issues

- Language Design and Implementation
 - ► Transaction Synchronisers (Luchangco et al 2005)
 - ▶ cJoin with commits Bruni, Melgratti, Montanari ENTCS 2004
 - ► Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)
 - ► Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)
 - ► ... Abstractions for Concurrent Consensus (Spaccasassi, Koutavas, Trends
 - **.**
- ► Semantics what should happen when programs are run
 - ▶ Topic of todays talk

Approach:

- Take a well-studied small language, with well understood semantic theory: CCS
- extend with transactional constructs
- extend existing semantic theory

Co-operating Transactions: Issues

- Language Design and Implementation
 - ► Transaction Synchronisers (Luchangco et al 2005)
 - ▶ cJoin with commits Bruni, Melgratti, Montanari ENTCS 2004
 - ► Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)
 - ► Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)
 - ... Abstractions for Concurrent Consensus (Spaccasassi, Koutavas, Trends in Functional Programming 2013)
 - **•**
- ► Semantics what should happen when programs are run
 - Topic of todays talk

Approach:

- Take a well-studied small language, with well understood semantic theory: CCS
- extend with transactional constructs
- extend existing semantic theory

Minimal concurrent programming/specification language:

- ► Act_{τ} : abstract actions supporting communication/co-operation
- ightharpoonup Concurrency: $P \mid Q$: independent concurrent processes
- ▶ Local resources: $\nu a.P$: action a is local to P
- ▶ Iteration/Recursion: recX.P

 $a \in Act \leftarrow \text{needs co-operation of} \rightarrow \overline{a} \in Act$

Minimal concurrent programming/specification language:

- Act_τ: abstract actions supporting communication/co-operation
- ► Concurrency: *P* | *Q*: independent concurrent processes
- ▶ Local resources: $\nu a.P$: action a is local to P
- ▶ Iteration/Recursion: recX.P

 $a \in Act \leftarrow \text{needs co-operation of} \rightarrow \overline{a} \in Act$

CCS: Executing processes: P o Q Reduction semantics:

► Co-operation/Communication:

(r-comm)
$$\sum \mu_i.P_i \mid \sum
u_j.Q_j
ightarrow P_i \mid Q_j$$
 if $u_j = \overline{\mu_i}$

Contextual rules:

$$(R-PAR)$$
 $(R-NEW)$ $P o P'$ $P \mid Q o P' \mid Q$ $(R-NEW)$ $P o P'$ $\nu a.P o \nu a.P'$

Housekeeping rules:

(R-REC)
$$\operatorname{rec} X.P \to P \{ \operatorname{rec} X.P/X \}$$

Transaction $[P \triangleright_k Q]$

- execute P to completion (commit)
- subject to random aborts
- ▶ if aborted, roll back environmental impact of P and initiate Q

Simplification: in $P \triangleright P \cap Q$ bodies P and Q do not contain active transactions

Transaction $[P \triangleright_k Q]$:

- execute P to completion (commit)
- subject to random aborts
- ▶ if aborted, roll back environmental impact of P and initiate Q

Simplification: in $[P \triangleright_k Q]$ bodies P and Q do not contain active transactions

$$[a.b.co \triangleright_k 0]$$

$$\nu p.[\![a.\text{co}.p \triangleright_{k_1} \mathbf{0}]\!] \mid [\![\overline{p}.b.\text{co} \triangleright_{k_2} \mathbf{0}]\!]$$

$$\mu X. [a.(b.co + c.co) \triangleright_{\nu} X]$$

$$\mu X.[a.(b.co + c.co) \triangleright_k X] \quad \mu X.[a.b.co + a.c.co) \triangleright_k X]$$

$$\mu X$$
. [a.b.co $\triangleright_k X$]

$$\mu X$$
.[a.b.co + a.c.0) $\triangleright_k X$]

$$\llbracket a.\mathsf{co} \, \triangleright_{k_1} \, \mathbf{0} \rrbracket \, \mid \, \llbracket b.\mathsf{co} \, \triangleright_{k_2} \, \mathbf{0}$$

$$[a.b.co + b.a.co \triangleright_k 0]$$

$$\nu p. \llbracket a.p. \mathsf{co} \triangleright_{k_1} \mathbf{0} \rrbracket \mid \llbracket b. \overline{p}. \mathsf{co} \triangleright_{k_2} \mathbf{0} \rrbracket$$

Executing Transactions: $P \rightarrow Q$ reduction semantics

- Co-operation/Communication
- Contextual rules
- Housekeeping rules

▶ aborts/commits eg.
$$[P \triangleright_k Q] \rightarrow Q$$

roll back management

Executing Transactions: P o Q reduction semantics

- ► Co-operation/Communication
- Contextual rules
- Housekeeping rules
- aborts/commits

random abort

roll back management

- shared destiny via fresh renaming of transactions
- shared destiny via distributed transactions

- shared destiny via fresh renaming of transactions
- shared destiny via distributed transactions

- shared destiny via fresh renaming of transactions
- shared destiny via distributed transactions

- shared destiny via fresh renaming of transactions
- shared destiny via distributed transactions

Co-operation/Communication: reduction semantics

Communication:

$$\begin{bmatrix}
R_1 \mid \sum \mu_i P_i \triangleright_{l_1} - \end{bmatrix} \mid \begin{bmatrix} R_2 \mid \sum \nu_j Q_j \triangleright_{l_2} - \end{bmatrix} \\
\rightarrow \begin{bmatrix}
R_1 \mid P_i \triangleright_{k} - \end{bmatrix} \mid \begin{bmatrix} R_2 \mid Q_j \triangleright_{k} - \end{bmatrix} \quad \text{if } \nu_j = \overline{\mu_i}$$

k fresh

- ► Contextual rules:
- ► Housekeeping rules:

Co-operation/Communication: reduction semantics

Communication:

$$\begin{bmatrix}
R_1 \mid \sum \mu_i P_i \triangleright_{l_1} - \end{bmatrix} \mid \begin{bmatrix} R_2 \mid \sum \nu_j Q_j \triangleright_{l_2} - \end{bmatrix} \\
\rightarrow \begin{bmatrix}
R_1 \mid P_i \triangleright_{k} - \end{bmatrix} \mid \begin{bmatrix} R_2 \mid Q_j \triangleright_{k} - \end{bmatrix} \quad \text{if } \nu_j = \overline{\mu_i}$$

k fresh

- ► Contextual rules:
- ► Housekeeping rules:

$$[\![a.b.\mathtt{co} \rhd_{k_1} \ \mathbf{0}]\!] \mid [\![\overline{b}.\mathtt{co} \rhd_{k_2} \ \mathbf{0}]\!] \mid [\![\overline{a}.\mathtt{co}.A \rhd_{k_3} \ B]\!]$$

$$\rightarrow \llbracket \mathsf{co} \, \triangleright_{l} \, \mathbf{0} \rrbracket \mid \llbracket \mathsf{co} \, \triangleright_{l} \, \mathbf{0} \rrbracket \mid \llbracket \mathsf{co}.A \, \triangleright_{l} \, B \rrbracket$$

$$\rightarrow$$
 0 | 0 | A

via distributed commit

$$\rightarrow$$
 0 | 0 | B

via distributed abort

$$\llbracket a.b. co \triangleright_{k_1} \mathbf{0} \rrbracket \mid \llbracket \overline{b}. co \triangleright_{k_2} \mathbf{0} \rrbracket \mid \llbracket \overline{a}. co. A \triangleright_{k_3} B \rrbracket$$

$$\to \llbracket b.\mathtt{co} \, \rhd_{\textcolor{red}{k}} \, \boldsymbol{0} \rrbracket \mid \llbracket \overline{b}.\mathtt{co} \, \rhd_{\textcolor{red}{k_2}} \, \boldsymbol{0} \rrbracket \mid \llbracket \mathtt{co}.A \, \rhd_{\textcolor{red}{k}} \, B \rrbracket$$

$$\rightarrow \llbracket \mathsf{co} \, \triangleright_{\mathsf{I}} \, \mathbf{0} \rrbracket \mid \llbracket \mathsf{co} \, \triangleright_{\mathsf{I}} \, \mathbf{0} \rrbracket \mid \llbracket \mathsf{co}.A \, \triangleright_{\mathsf{I}} \, B \rrbracket$$

$$\rightarrow$$
 0 | 0 | Δ

via distributed commit

$$\rightarrow$$
 0 | 0 | B

via distributed abort

$$\llbracket a.b. co \triangleright_{k_1} \mathbf{0} \rrbracket \mid \llbracket \overline{b}. co \triangleright_{k_2} \mathbf{0} \rrbracket \mid \llbracket \overline{a}. co. A \triangleright_{k_3} B \rrbracket$$

$$\to \llbracket b.\mathtt{co} \, \triangleright_{\pmb{k}} \, \mathbf{0} \rrbracket \mid \llbracket \overline{b}.\mathtt{co} \, \triangleright_{k_2} \, \mathbf{0} \rrbracket \mid \llbracket \mathtt{co}.A \, \triangleright_{\pmb{k}} \, B \rrbracket$$

$$\rightarrow \llbracket \mathsf{co} \, \triangleright_{\mathsf{I}} \, \mathbf{0} \rrbracket \mid \llbracket \mathsf{co} \, \triangleright_{\mathsf{I}} \, \mathbf{0} \rrbracket \mid \llbracket \mathsf{co}.A \, \triangleright_{\mathsf{I}} \, B \rrbracket$$

$$\rightarrow$$
 0 | 0 | A via distributed commit

$$\rightarrow$$
 0 | 0 | B via distributed abort

$$\llbracket a.b. co \triangleright_{k_1} \mathbf{0} \rrbracket \mid \llbracket \overline{b}. co \triangleright_{k_2} \mathbf{0} \rrbracket \mid \llbracket \overline{a}. co. A \triangleright_{k_3} B \rrbracket$$

$$\to \llbracket b.\mathtt{co} \, \triangleright_{\pmb{k}} \, \mathbf{0} \rrbracket \mid \llbracket \overline{b}.\mathtt{co} \, \triangleright_{\pmb{k}_2} \, \mathbf{0} \rrbracket \mid \llbracket \mathtt{co}.A \, \triangleright_{\pmb{k}} \, B \rrbracket$$

$$\rightarrow \llbracket \mathsf{co} \triangleright_{\mathsf{i}} \mathbf{0} \rrbracket \mid \llbracket \mathsf{co} \triangleright_{\mathsf{i}} \mathbf{0} \rrbracket \mid \llbracket \mathsf{co}.A \triangleright_{\mathsf{i}} B \rrbracket$$

$$\rightarrow$$
 0 | 0 | A

via distributed commit /

$$\rightarrow$$
 0 | 0 | B

via distributed abort

$$[\![a.b.co \triangleright_{k_1} \mathbf{0}]\!] \mid [\![\overline{b}.co \triangleright_{k_2} \mathbf{0}]\!] \mid [\![\overline{a}.co.A \triangleright_{k_3} B]\!]$$

$$\to \llbracket b.\mathtt{co} \, \triangleright_{\pmb{k}} \, \mathbf{0} \rrbracket \mid \llbracket \overline{b}.\mathtt{co} \, \triangleright_{\pmb{k}_2} \, \mathbf{0} \rrbracket \mid \llbracket \mathtt{co}.A \, \triangleright_{\pmb{k}} \, B \rrbracket$$

$$\rightarrow \llbracket \mathsf{co} \triangleright_{\mathsf{i}} \mathbf{0} \rrbracket \mid \llbracket \mathsf{co} \triangleright_{\mathsf{i}} \mathbf{0} \rrbracket \mid \llbracket \mathsf{co}.A \triangleright_{\mathsf{i}} B \rrbracket$$

$$\rightarrow$$
 0 | 0 | A via distributed commit

$$\rightarrow$$
 0 | **0** | *B* via distributed abort /

Environment roll-back: reduction semantics

(R-ROLLBACK)
$$\sum \mu_i P_i \mid \left[R_2 \mid \sum \nu_j Q_j \triangleright_I - \right]$$

 \rightarrow

$$\llbracket P_i \mid \text{co} \triangleright_k \sum_{\mu_i P_i} \rrbracket \mid \llbracket R_2 \mid Q_i \triangleright_k - \rrbracket$$

if
$$\nu_i = \overline{\mu_i}$$

k fresh

rollback as compensation

Environment roll-back: reduction semantics

(R-ROLLBACK)
$$\sum \mu_i P_i \mid \left[R_2 \mid \sum \nu_j Q_j \triangleright_I - \right]$$

$$\llbracket P_i \mid \text{co} \triangleright_{\mathbf{k}} \sum \mu_i P_i \rrbracket \mid \llbracket R_2 \mid Q_i \triangleright_{\mathbf{k}} - \rrbracket$$

if
$$\nu_i = \overline{\mu_i}$$

k fresh

rollback as compensation

Example

Environment roll-back:

- ▶ Original environment $(p_1.b_1 + p_2.b_2)$ re-instated
- reduction semantics supports consistency



Example

Environment roll-back:

- ▶ Original environment $(p_1.b_1 + p_2.b_2)$ re-instated
- reduction semantics supports consistency

Behavioural equivalences

What transactions should be behavourally indistinguishable?

$$\mu X. \llbracket P \mid \mathsf{co} \triangleright_k X \rrbracket \quad \stackrel{?}{\approx}_{behav} \quad P$$

$$\mu X. \llbracket a.b.\mathsf{co} \triangleright_k X \rrbracket \quad \stackrel{?}{\approx}_{behav} \quad \mu X. \llbracket a.b.\mathsf{co} + a.c. \emptyset) \triangleright_k X \rrbracket$$

$$\llbracket a.\mathsf{co} \triangleright_{k_1} \emptyset \rrbracket \mid \llbracket b.\mathsf{co} \triangleright_{k_2} \emptyset \rrbracket \quad \stackrel{?}{\approx}_{behav} \quad \nu p. \overline{p} \mid$$

$$\llbracket a.p.\mathsf{co}. \overline{p} \triangleright_{k_1} \emptyset \rrbracket \mid \llbracket b.p.\mathsf{co}. \overline{p} \triangleright_{k_2} \emptyset \rrbracket$$

Example

The well known equivalence: trace equivalence

Behavioural equivalences

What transactions should be behavourally indistinguishable?

$$\mu X. \llbracket P \mid \mathsf{co} \triangleright_k X \rrbracket \quad \stackrel{?}{\approx}_{\mathit{behav}} \quad P$$

$$\mu X. \llbracket a.b.\mathsf{co} \triangleright_k X \rrbracket \quad \stackrel{?}{\approx}_{\mathit{behav}} \quad \mu X. \llbracket a.b.\mathsf{co} + a.c. \emptyset) \triangleright_k X \rrbracket$$

$$\llbracket a.\mathsf{co} \triangleright_{k_1} \emptyset \rrbracket \mid \llbracket b.\mathsf{co} \triangleright_{k_2} \emptyset \rrbracket \quad \stackrel{?}{\approx}_{\mathit{behav}} \quad \nu p. \overline{p} \mid$$

$$\llbracket a.p.\mathsf{co}. \overline{p} \triangleright_{k_1} \emptyset \rrbracket \mid \llbracket b.p.\mathsf{co}. \overline{p} \triangleright_{k_2} \emptyset \rrbracket$$

Example:

The well known equivalence: trace equivalence

CCS: Action semantics

CCS doing actions:

$$P \stackrel{a}{\Rightarrow} Q$$
 whenever $P \mid \overline{a}. \cdots \rightarrow Q \mid \cdots$

თ fresh

CCS doing sequences:

$$P \stackrel{s}{\Rightarrow} Q$$
, $s \in Act^*$, whenever $P \mid \overline{s}. \oplus Q \mid \oplus$

CCS Trace equivalence:

$$TR(P) = \{ s \in Act^* \mid P \stackrel{s}{\Rightarrow} \}$$

$$P \approx_{\mathsf{tr}} Q$$
 whenever $\mathsf{TR}(P) = \mathsf{TR}(Q)$

TCCS^m: committed Action semantics

Transactions doing committed actions:

$$P \stackrel{a}{\Longrightarrow} Q$$
 whenever $P \mid \overline{a}. \omega \rightarrow Q \mid \omega$

თ fresh

Transaction doing committed sequences:

$$P \overset{s}{\Longrightarrow} Q$$
, $s \in Act^{\star}$, whenever $P \mid \overline{s}. \circ \rightarrow Q \mid \circ \circ$

cTrace equivalence for transactions:

$$cTR(P) = \{ s \in Act^* \mid P \stackrel{s}{\Longrightarrow} \}$$

$$P \approx_{\mathsf{ctr}} Q$$
 whenever $\mathsf{cTR}(P) = \mathsf{cTR}(Q)$

$$P = [\![a.b. \texttt{co} \, \rhd_k \, \, \mathbf{0}]\!] \quad Q = \nu p. [\![a. \texttt{co}.p \, \rhd_{k_1} \, \, \mathbf{0}]\!] \mid [\![\overline{p}.b. \texttt{co} \, \rhd_{k_2} \, \, \mathbf{0}]\!]$$

$P \not\approx_{\mathsf{ctr}} Q$:

$$ightharpoonup$$
 cTR(P) = { ε , ab }

ightharpoonup cTR(Q) = { ε , a, ab}

$$R = \mu X. \llbracket a.(b.co + c.0) \triangleright_k X \rrbracket \quad S = \mu X. \llbracket a.b.co + a.c.0 \rangle \triangleright_k X \rrbracket$$

 $R \approx_{\mathsf{ctr}} S$

$$ightharpoonup$$
 cTR(R) = { ε , ab }

ightharpoonup cTR(S) = { ε , ab}

not prefix-closed

not prefix-closed

$$P = \llbracket a.b.\mathtt{co} \, \triangleright_k \, \mathbf{0} \rrbracket \quad Q = \nu p. \llbracket a.\mathtt{co}.p \, \triangleright_{k_1} \, \mathbf{0} \rrbracket \, | \, \llbracket \overline{p}.b.\mathtt{co} \, \triangleright_{k_2} \, \mathbf{0} \rrbracket$$

$P \not\approx_{\mathsf{ctr}} Q$:

▶
$$cTR(P) = \{\varepsilon, ab\}$$

not prefix-closed

$$ightharpoonup$$
 cTR(Q) = { ε , a , ab }

$$R = \mu X.[a.(b.co + c.0) \triangleright_k X] \quad S = \mu X.[a.b.co + a.c.0) \triangleright_k X]$$

$R \approx_{\mathsf{ctr}} S$

$$ightharpoonup$$
 cTR(R) = { ε , ab }

ot prefix-closed

▶
$$cTR(S) = \{\varepsilon, ab\}$$

not prefix-closed

$$P = [\![a.b. \texttt{co} \, \rhd_k \, \mathbf{0}]\!] \quad Q = \nu p. [\![a. \texttt{co}.p \, \rhd_{k_1} \, \mathbf{0}]\!] \mid [\![\overline{p}.b. \texttt{co} \, \rhd_{k_2} \, \mathbf{0}]\!]$$

P ≉_{ctr} Q:

▶
$$cTR(P) = \{\varepsilon, ab\}$$

not prefix-closed

$$ightharpoonup$$
 cTR $(Q) = \{ \varepsilon, a, ab \}$

$$R = \mu X.[a.(b.co + c.0) \triangleright_k X]$$
 $S = \mu X.[a.b.co + a.c.0) \triangleright_k X]$

 $R \approx_{\mathsf{ctr}} S$:

▶
$$cTR(R) = \{\varepsilon, ab\}$$

not prefix-closed

▶
$$cTR(S) = \{\varepsilon, ab\}$$

not prefix-closed

$$P = \llbracket a.b. co \rhd_k \mathbf{0} \rrbracket \quad Q = \nu p. \llbracket a. co. p \rhd_{k_1} \mathbf{0} \rrbracket \mid \llbracket \overline{p}.b. co \rhd_{k_2} \mathbf{0} \rrbracket$$

P ≉_{ctr} Q:

▶
$$cTR(P) = \{\varepsilon, ab\}$$

not prefix-closed

$$ightharpoonup$$
 cTR $(Q) = \{ \varepsilon, a, ab \}$

$$R = \mu X.[a.(b.co + c.0) \triangleright_k X]$$
 $S = \mu X.[a.b.co + a.c.0) \triangleright_k X]$

 $R \approx_{\mathsf{ctr}} S$:

▶ cTR(
$$R$$
) = { ε , ab }

not prefix-closed

▶
$$cTR(S) = \{\varepsilon, ab\}$$

not prefix-closed

Justifying Trace equivalence: Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

▶ A safety property can be formulated as a safety test T° which signals on fresh channel \circ when it detects the bad behaviour

Definition (Passing tests)

P fails safety test T° whenever $P \mid T^{\circ} \rightarrow^* P' \mid \circ$

Example tests:

- $ightharpoonup \mu X.(a.X+ ext{err.}0)$ can not perform err while performing any sequence of as
- $T^{\circ} = \text{err.} \circ | \overline{a}.\overline{b}|$ can not perform err when a followed by b is offered.

Examples:

- $\blacktriangleright \mu X. [a.b.co \mid \overline{err} \triangleright_k X]$ fails safety test T°
- $\blacktriangleright \mu X. [a.b.co + \overline{err} \triangleright_k X]$ passes safety test T°

Justifying Trace equivalence: Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

▶ A safety property can be formulated as a safety test T° which signals on fresh channel \circ when it detects the bad behaviour

Definition (Passing tests)

P fails safety test T° whenever $P \mid T^{\circ} \rightarrow^* P' \mid \circ$

Example tests:

- ullet $\mu X.(a.X+{
 m err.}\odot)$ can not perform err while performing any sequence of as
- $m{\mathcal{T}}^{\scriptscriptstyle (0)} = \operatorname{\mathsf{err}}.{\scriptscriptstyle (0)} \mid \overline{a}.\overline{b}$ can not perform err when a followed by b is offered.

Examples:

- $\blacktriangleright \mu X. [a.b.co \mid \overline{err} \triangleright_k X]$ fails safety test T°
- $\blacktriangleright \mu X.[a.b.co + \overline{err} \triangleright_k X]$ passes safety test T°

Justifying Trace equivalence: Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

▶ A safety property can be formulated as a safety test T° which signals on fresh channel \circ when it detects the bad behaviour

Definition (Passing tests)

P fails safety test T° whenever $P \mid T^{\circ} \rightarrow^* P' \mid \circ$

Example tests:

- ullet $\mu X.(a.X+{
 m err.}\oplus)$ can not perform err while performing any sequence of as
- $m{\mathcal{T}}^{\odot}=\mathsf{err.}\odot \mid m{\overline{a}}.m{\overline{b}}$ can not perform err when a followed by b is offered.

Examples:

- ▶ μX . [a.b.co | $\overline{\text{err}} \triangleright_k X$] fails safety test T°
- $\blacktriangleright \mu X.[a.b.co + \overline{err} \triangleright_k X]$ passes safety test T°

Justifying Traces

In CCS: well-known

 $P \approx_{\mathsf{tr}} Q$ if and only for every T° ,

P passes safety test $T^{\circ} \Longleftrightarrow Q$ passes safety test T°

In *TCCS*^m: conjecture

 $P \approx_{\mathsf{tr}} Q$ if and only for every T° .

P passes safety test $T^{\circ} \iff Q$ passes safety test T°

See: Concur 2010 for proof in different language of transactions

Justifying Traces

In CCS: well-known

 $P pprox_{\mathsf{tr}} Q$ if and only for every τ° ,

P passes safety test $T^{\circ} \iff Q$ passes safety test T°

In *TCCS*^m: conjecture

 $P \approx_{\mathsf{tr}} Q$ if and only for every τ° ,

P passes safety test $T^{\circ} \iff Q$ passes safety test T°

See: Concur 2010 for proof in different language of transactions.

The problem with traces

very well-known

Trace equivalence insensitive to presence of deadlocks

In CCS: $a.b.0 \approx_{\mathsf{tr}} a.b.0 + a.0$

In TCCS^m: What constitutes a deadlock?

In TCCS^m: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive to deadlocks

Rob J. van Glabbeek: The Linear Time-Branching Time Spectrum. CONCUR 1990: and later

CONCUR 1990: The first ever CONCUR conference

The problem with traces

very well-known

Trace equivalence insensitive to presence of deadlocks

In CCS: $a.b.0 \approx_{\mathsf{tr}} a.b.0 + a.0$

In TCCS^m: What constitutes a deadlock?

In TCCS^m: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive to deadlocks

Rob J. van Glabbeek: The Linear Time-Branching Time Spectrum. CONCUR 1990: and later

CONCUR 1990. The first ever CONCUR conference

The problem with traces

very well-known

Trace equivalence insensitive to presence of deadlocks

In CCS: $a.b.0 \approx_{\mathsf{tr}} a.b.0 + a.0$

In TCCS^m: What constitutes a deadlock?

In TCCS^m: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive to deadlocks

Rob J. van Glabbeek: The Linear Time-Branching Time Spectrum. CONCUR 1990: and later

CONCUR 1990: The first ever CONCUR conference

CCS Bisimulations $P \approx_{\text{bisim}} Q$

The largest relation over processes such that, if $P \approx_{\mathsf{bisim}} Q$ then, for every $\mu \in \mathit{Act}_{\tau}$

- ▶ $P \stackrel{\mu}{\Rightarrow} P'$ implies $Q \stackrel{\mu}{\Rightarrow} Q'$ such that $P' \approx_{\text{bisim}} Q'$
- $ightharpoonup Q \stackrel{\mu}{\Rightarrow} Q'$ implies $P \stackrel{\mu}{\Rightarrow} P'$ such that $P' \approx_{\mathsf{bisim}} Q'$ symmetrically

Trace version

The largest relation over processes such that, if $P \approx_{\mathsf{bisim}} Q$ then, for every $s \in Act^*$,

- ▶ $P \stackrel{5}{\Rightarrow} P'$ implies $Q \stackrel{5}{\Rightarrow} Q'$ such that $P' \approx_{\text{bisim}} Q'$
- $\triangleright Q \stackrel{5}{\Rightarrow} Q'$ implies $P \stackrel{5}{\Rightarrow} P'$ such that $P' \approx_{\text{bisim}} Q'$ symmetrically

CCS Bisimulations F

 $P \approx_{\mathsf{bisim}} Q$

The largest relation over processes such that, if $P \approx_{\mathsf{bisim}} Q$ then, for every $\mu \in \mathit{Act}_{\tau}$

- ▶ $P \stackrel{\mu}{\Rightarrow} P'$ implies $Q \stackrel{\mu}{\Rightarrow} Q'$ such that $P' \approx_{\mathsf{bisim}} Q'$
- $ightharpoonup Q \stackrel{\mu}{\Rightarrow} Q'$ implies $P \stackrel{\mu}{\Rightarrow} P'$ such that $P' \approx_{\mathsf{bisim}} Q'$ symmetrically

Trace version:

The largest relation over processes such that, if $P \approx_{\mathsf{bisim}} Q$ then, for every $s \in Act^*$,

- ▶ $P \stackrel{s}{\Rightarrow} P'$ implies $Q \stackrel{s}{\Rightarrow} Q'$ such that $P' \approx_{\text{bisim}} Q'$
- $\triangleright Q \stackrel{s}{\Rightarrow} Q'$ implies $P \stackrel{s}{\Rightarrow} P'$ such that $P' \approx_{\text{bisim}} Q'$ symmetrically

TCCS^m: Bisimulations a suggestion

The largest relation over transactions such that, if $P \approx_{\mathsf{cbisim}} Q$ then, for $s \in Act^*$,

- ▶ $P \stackrel{s}{\Longrightarrow} P'$ implies $Q \stackrel{s}{\Longrightarrow} Q'$ such that $P' \approx_{\mathsf{cbisim}} Q'$
- ▶ $Q \stackrel{s}{\Longrightarrow} Q'$ implies $P \stackrel{s}{\Longrightarrow} P'$ such that $P' \approx_{\text{cbisim}} Q'$

Suspicions

- ▶ In CCS: $a.(b.0 + c.0) \not\approx_{\text{bisim}} a.b.0 + a.c.0$
- ▶ In $TCCS^m$: $[a.(b.co + c.co) \triangleright_k 0] \approx_{\text{cbisim}} [a.b.co + a.c.co) \triangleright_k 0]$

Question

Should
$$\llbracket a.(b.co+c.co)
ho_k \ 0 \rrbracket \overset{?}{\approx}_{hebay} \llbracket a.b.co+a.c.co
ho_k \ 0 \rrbracket$$

TCCS^m: Bisimulations a suggestion

The largest relation over transactions such that, if $P \approx_{\mathsf{cbisim}} Q$ then, for $s \in Act^*$,

- ▶ $P \stackrel{s}{\Longrightarrow} P'$ implies $Q \stackrel{s}{\Longrightarrow} Q'$ such that $P' \approx_{\mathsf{cbisim}} Q'$
- ▶ $Q \stackrel{s}{\Longrightarrow} Q'$ implies $P \stackrel{s}{\Longrightarrow} P'$ such that $P' \approx_{\mathsf{cbisim}} Q'$

Suspicions:

- ▶ In CCS: $a.(b.0 + c.0) \not\approx_{bisim} a.b.0 + a.c.0$
- ▶ In $TCCS^m$: $[a.(b.co + c.co) \triangleright_k 0] \approx_{\text{cbisim}} [a.b.co + a.c.co) \triangleright_k 0]$

Question

Should
$$[a.(b.co + c.co) \triangleright_{k} 0] \stackrel{?}{\approx}_{behav} [a.b.co + a.c.co \triangleright_{k} 0]$$

TCCS^m: Bisimulations a suggestion

The largest relation over transactions such that, if $P \approx_{\mathsf{cbisim}} Q$ then, for $s \in Act^*$,

- ▶ $P \stackrel{s}{\Longrightarrow} P'$ implies $Q \stackrel{s}{\Longrightarrow} Q'$ such that $P' \approx_{\mathsf{cbisim}} Q'$
- ▶ $Q \stackrel{s}{\Longrightarrow} Q'$ implies $P \stackrel{s}{\Longrightarrow} P'$ such that $P' \approx_{\mathsf{cbisim}} Q'$

Suspicions:

- ▶ In CCS: $a.(b.0 + c.0) \not\approx_{bisim} a.b.0 + a.c.0$
- ▶ In $TCCS^m$: $[a.(b.co + c.co) \triangleright_k \mathbf{0}] \approx_{cbisim} [a.b.co + a.c.co) \triangleright_k \mathbf{0}]$

Question:

Should
$$[a.(b.co + c.co) \triangleright_k 0] \stackrel{?}{\approx}_{behav} [a.b.co + a.c.co \triangleright_k 0]$$

Robin Milner, Davide Sangiorgi: Barbed Bisimulation. ICALP 1992

We propose in this paper barbed bisimulation as a tool to describe bisimulation-based equivalence uniformly for any calculi possessing

- (a) a reduction relation
- (b) a convergency predicate which simply detects the possibility of performing some observable action.

This opens interesting perspectives for the adoption of a reduction semantics in process algebras. As a test-case we prove that strong bisimulation of CCS coincides with the congruence induced by barbed bisimulation.

Justifying Bisimulations: Reduction closure

Requirement: A reduction relation $P \rightarrow Q$ between processes.

Definition:

A relation $P \approx_{\mathsf{behav}} Q$ is reduction-closed if, whenever $P \approx_{\mathsf{behav}} Q$,

- (i) $P \to^* P'$ implies $Q \to^* Q'$ such that $P' \approx_{\mathsf{behav}} Q'$
- (ii) $Q \to^* Q'$ implies $P \to^* P'$ such that $P' \approx_{\mathsf{behav}} Q'$

Intuition:

P and Q must maintain the equivalent choice possibilities

Justifying Bisimulations: Contextual equivalence : (variation on M & S)

Requirements:

- (i) A collection of observation relations on processes: e.g. $P \Downarrow a$
- (ii) a parallel operator on processes: e.g. $P \mid Q$

Definition: (Honda Yoshida)

 $P \approx_{\mathsf{cxt}} Q$ is the largest relation which is

- preserved by parallel composition
- reduction closed
- preserves observations.

Remark

 $P \approx_{\mathsf{cxt}} Q$ is definable for many languages

Justifying Bisimulations: Contextual equivalence : (variation on M & S)

Requirements:

- (i) A collection of observation relations on processes: e.g. $P \Downarrow a$
- (ii) a parallel operator on processes: e.g. $P \mid Q$

Definition: (Honda Yoshida)

 $P \approx_{\mathsf{cxt}} Q$ is the largest relation which is

- preserved by parallel composition
- reduction closed
- preserves observations.

Remark:

 $P \approx_{\mathsf{cxt}} Q$ is definable for many languages

Theorem: In CCS $P \approx_{\mathsf{cxt}} Q \iff P \approx_{\mathsf{bisim}} Q$

Significance

- Bisimulations provide a sound and complete proof method for contextual equivalence in CCS
- Variations on bisimulations are also sound and complete for many languages

Inconvenience:

In $TCCS^m$: $P \approx_{ ext{cbisim}} Q$ does NOT imply $P \approx_{ ext{cxt}} Q$ chisimulations are unsound

Counter-example

- $\qquad \qquad \blacksquare \ [a.(b.co+c.co) \rhd_k \ 0] \approx_{\mathsf{cbisim}} \ [a.b.co+a.c.co) \rhd_k \ 0]$
- ▶ $[a.(b.co + c.co) \triangleright_k 0] \not\approx_{cxt} [a.b.co + a.c.co \triangleright_k 0]$

Theorem: In CCS $P \approx_{\mathsf{cxt}} Q \iff P \approx_{\mathsf{bisim}} Q$

Significance:

- ▶ Bisimulations provide a sound and complete proof method for contextual equivalence in *CCS*
- Variations on bisimulations are also sound and complete for many languages

Inconvenience

In $TCCS^m$: $P pprox_{ ext{cbisim}} Q$ does NOT imply $P pprox_{ ext{cxt}} Q$ chisimulations are unsound

Counter-example:

- $\qquad \qquad \blacksquare \ \ [a.(b.co+c.co) \rhd_k \ 0] \approx_{\mathsf{cbisim}} \ [a.b.co+a.c.co) \rhd_k \ 0]$
- ▶ $[a.(b.co + c.co) \triangleright_k 0] \not\approx_{cxt} [a.b.co + a.c.co \triangleright_k 0]$

Theorem: In CCS $P \approx_{\mathsf{cxt}} Q \iff P \approx_{\mathsf{bisim}} Q$

Significance:

- ▶ Bisimulations provide a sound and complete proof method for contextual equivalence in *CCS*
- Variations on bisimulations are also sound and complete for many languages

Inconvenience:

In $TCCS^m$: $P \approx_{\mathsf{cbisim}} Q$ does NOT imply $P \approx_{\mathsf{cxt}} Q$ chisimulations are unsound

Counter-example:

- ▶ $\llbracket a.(b.co + c.co) \triangleright_k 0 \rrbracket \approx_{\text{cbisim}} \llbracket a.b.co + a.c.co) \triangleright_k 0 \rrbracket$
- $\qquad \qquad \blacksquare a.(b.co + c.co) \triangleright_k 0 \blacksquare \not\approx_{\mathsf{cxt}} \llbracket a.b.co + a.c.co \triangleright_k 0 \rrbracket$

Theorem: In CCS $P \approx_{\mathsf{cxt}} Q \iff P \approx_{\mathsf{bisim}} Q$

Significance:

- Bisimulations provide a sound and complete proof method for contextual equivalence in CCS
- Variations on bisimulations are also sound and complete for many languages

Inconvenience:

In $TCCS^m$: $P \approx_{\mathsf{cbisim}} Q$ does NOT imply $P \approx_{\mathsf{cxt}} Q$ obisimulations are unsound

Counter-example:

- ▶ $\llbracket a.(b.co + c.co) \triangleright_k \mathbf{0} \rrbracket \approx_{\mathsf{cbisim}} \llbracket a.b.co + a.c.co) \triangleright_k \mathbf{0} \rrbracket$
- ▶ $[a.(b.co + c.co) \triangleright_k \mathbf{0}] \not\approx_{cxt} [a.b.co + a.c.co \triangleright_k \mathbf{0}]$

$$P = [a.(b.co + c.co) \triangleright_k 0] \qquad Q = [a.b.co + a.c.co \triangleright_k 0]$$

- ► P ≉_{cxt} Q
- ▶ because $P \mid \llbracket \overline{a}.\mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket \not\approx_{\mathsf{cxt}} Q \mid \llbracket \overline{a}.\mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket$
- because

 - $ightharpoonup Q \mid [\overline{a}.co \rhd_k 0] \rightarrow^* ?$

Moral

Internal tentative decision states matte

remember CCS: $a.(b.0 + c.0) \approx_{cvt} a.b.0 + a.c.0$

$$P = [a.(b.co + c.co) \triangleright_k 0] \qquad Q = [a.b.co + a.c.co \triangleright_k 0]$$

- ► P ≉_{cxt} Q
- ▶ because $P \mid \llbracket \overline{a}.\mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket \not\approx_{\mathsf{cxt}} Q \mid \llbracket \overline{a}.\mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket$
- because

 - $ightharpoonup Q \mid [\bar{a}.co \rhd_k 0] \rightarrow^* ?$

Moral

Internal tentative decision states matte

remember CCS: $a.(b.0 + c.0) \approx_{cvt} a.b.0 + a.c.0$

$$P = [a.(b.co + c.co) \triangleright_k 0] \qquad Q = [a.b.co + a.c.co \triangleright_k 0]$$

- ► P ≉_{cxt} Q
- ▶ because $P \mid \llbracket \overline{a}.\mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket \not\approx_{\mathsf{cxt}} Q \mid \llbracket \overline{a}.\mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket$
- because

 - ▶ $Q \mid [\bar{a}.co \triangleright_k 0] \rightarrow^* ?$

Moral

Internal tentative decision states matte

remember CCS: $a.(b.0 + c.0) \approx_{cvt} a.b.0 + a.c.0$

$$P = [a.(b.co + c.co) \triangleright_k 0] \qquad Q = [a.b.co + a.c.co \triangleright_k 0]$$

- ► P ≉_{cxt} Q
- ▶ because $P \mid \llbracket \overline{a}.\mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket \not\approx_{\mathsf{cxt}} Q \mid \llbracket \overline{a}.\mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket$
- because

 - ▶ $Q \mid [\bar{a}.co \triangleright_k 0] \rightarrow^* ?$

Moral:

Internal tentative decision states matter

remember CCS: $a.(b.0 + c.0) \approx_{cxt} a.b.0 + a.c.0$

TCCS^m Challenge

Find a notion of bisimulation which characterises contextual equivalence $\approx_{\rm cxt}$

Obstacles

some tentative states are relevant:

$$[a.(b.co + c.co) \triangleright_k 0] \not\approx_{cxt} [a.b.co + a.c.co \triangleright_k 0]$$

some tentative states are not relevant:

$$[a.(b.co+c.0) \triangleright_k 0] \approx_{cxt} [a.b.co+a.c.0) \triangleright_k 0]$$

History is important:

- record tentative actions
- ▶ later decide which actions were really relevant

TCCS^m Challenge

Find a notion of bisimulation which characterises contextual equivalence \approx_{cxt}

Obstacles:

some tentative states are relevant:

$$[a.(b.co + c.co) \triangleright_k 0] \not\approx_{cxt} [a.b.co + a.c.co \triangleright_k 0]$$

some tentative states are not relevant:

$$[a.(b.co + c.0) \triangleright_k 0] \approx_{\mathsf{cxt}} [a.b.co + a.c.0) \triangleright_k 0]$$

History is important

- record tentative actions
- ▶ later decide which actions were really relevant

TCCS^m Challenge

Find a notion of bisimulation which characterises contextual equivalence \approx_{cxt}

Obstacles:

some tentative states are relevant:

$$[a.(b.co + c.co) \triangleright_k \mathbf{0}] \not\approx_{cxt} [a.b.co + a.c.co \triangleright_k \mathbf{0}]$$

some tentative states are not relevant:

$$\llbracket a.(b.co + c.0) \triangleright_k 0 \rrbracket \approx_{\mathsf{cxt}} \llbracket a.b.co + a.c.0) \triangleright_k 0 \rrbracket$$

History is important:

- record tentative actions
- later decide which actions were really relevant

History actions

- ► Tentative external action: $\mathcal{R} \rhd P \xrightarrow{k(a)} \mathcal{R}', k(a) \rhd P'$
- ▶ Internal action: $\mathcal{R} \triangleright P \xrightarrow{\tau} \mathcal{R}' \triangleright P'$
 - housekeeping
 - communication
 - transaction commit/abort

\mathcal{R} :

- records tentative external actions taken
- records retrospectively if tentative actions become
 - permanent
 - or aborted

History actions

- ▶ Tentative external action: $\mathcal{R} \rhd P \xrightarrow{k(a)} \mathcal{R}', k(a) \rhd P'$
- ▶ Internal action: $\mathcal{R} \triangleright P \xrightarrow{\tau} \mathcal{R}' \triangleright P'$
 - housekeeping
 - communication
 - transaction commit/abort

\mathcal{R} :

- records tentative external actions taken
- records retrospectively if tentative actions become
 - permanent
 - or aborted

History actions

- ▶ Tentative external action: $\mathcal{R} \rhd P \xrightarrow{k(a)} \mathcal{R}', k(a) \rhd P'$
- ▶ Internal action: $\mathcal{R} \triangleright P \xrightarrow{\tau} \mathcal{R}' \triangleright P'$
 - housekeeping
 - communication
 - transaction commit/abort

\mathcal{R} :

- records tentative external actions taken
- records retrospectively if tentative actions become
 - permanent
 - or aborted

$$\varepsilon \rhd \llbracket a.p.\mathsf{co} \, \rhd_{l_1} \, \, \boldsymbol{0} \rrbracket \mid \llbracket b.q.\mathsf{co} \, \rhd_{l_2} \, \, \boldsymbol{0} \rrbracket \mid \llbracket c.\overline{q}.\overline{p}.\mathsf{co} \, \rhd_{l_3} \, \, \boldsymbol{0} \rrbracket$$

 $\xrightarrow{k_1(a)}$

$$k_1(a) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbb{0} \rrbracket \mid \llbracket b.q.\operatorname{co} \rhd_{k_2} \ \mathbb{0} \rrbracket \mid \llbracket c.\overline{q}.\overline{p}.\operatorname{co} \rhd_{k_3} \ \mathbb{0} \rrbracket$$

$$k_1(a) \ k_2(b) \rhd \llbracket p.\operatorname{co}
ho_{k_1} \ 0 \rrbracket \ | \ \llbracket q.\operatorname{co}
ho_{k_2} \ 0 \rrbracket \ | \ \llbracket c.\overline{q}.\overline{p}.\operatorname{co}
ho_{l_3} \ 0 \rrbracket$$

$$k_1(a) \ k_2(b) \ k_3(c) \rhd \llbracket p. co \rhd_{k_1} \ \mathbf{0} \rrbracket \ | \ \llbracket q. co \rhd_{k_2} \ \mathbf{0} \rrbracket \ | \ \llbracket \overline{q}. \overline{p}. co \rhd_{k_3} \ \mathbf{0} \rrbracket$$

$$k_1(a) \ k_4(b) \ k_4(c) \rhd \llbracket p.\operatorname{co}
ho_{k_1} \ 0 \rrbracket \ | \ \llbracket \operatorname{co}
ho_{k_4} \ 0 \rrbracket \ | \ \llbracket \overline{p} \operatorname{co}
ho_{k_4} \ 0 \rrbracket$$

$$k_5(a) \ k_5(b) \ k_5(c) \rhd \llbracket \operatorname{co}
ho_{k_5} \ 0 \rrbracket \ | \ \llbracket \operatorname{co}
ho_{k_5} \ 0 \rrbracket \ | \ \llbracket \operatorname{co}
ho_{k_5} \ 0 \rrbracket$$

 $k_5(co) k_5(co) b | 0 | 0 | 0$

4 m > 4 m >

 $k_5(co) k_5(co) k_5(co) \triangleright 0 \mid 0 \mid 0$

 $k_5(co) k_5(co) k_5(co) > 0 | 0 | 0$

$$\begin{array}{c} \varepsilon \rhd \llbracket a.p.\operatorname{co} \rhd_{l_1} \ \mathbf{0} \rrbracket \ | \ \llbracket b.q.\operatorname{co} \rhd_{l_2} \ \mathbf{0} \rrbracket \ | \ \llbracket c.\overline{q}.\overline{p}.\operatorname{co} \rhd_{l_3} \ \mathbf{0} \rrbracket \\ & \frac{k_1(a)}{} & \operatorname{fresh} k_1 \\ & k_1(a) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \ | \ \llbracket b.q.\operatorname{co} \rhd_{l_2} \ \mathbf{0} \rrbracket \ | \ \llbracket c.\overline{q}.\overline{p}.\operatorname{co} \rhd_{l_3} \ \mathbf{0} \rrbracket \\ & \frac{k_2(b)}{} & \operatorname{fresh} k_2 \\ & k_1(a) \ k_2(b) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \ | \ \llbracket q.\operatorname{co} \rhd_{k_2} \ \mathbf{0} \rrbracket \ | \ \llbracket c.\overline{q}.\overline{p}.\operatorname{co} \rhd_{l_3} \ \mathbf{0} \rrbracket \\ & \frac{k_3(c)}{} & \operatorname{fresh} k_3 \\ & k_1(a) \ k_2(b) \ k_3(c) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \ | \ \llbracket q.\operatorname{co} \rhd_{k_2} \ \mathbf{0} \rrbracket \ | \ \llbracket \overline{q}.\overline{p}.\operatorname{co} \rhd_{k_3} \ \mathbf{0} \rrbracket \\ & \frac{\tau}{} & \operatorname{communication} \\ & k_1(a) \ k_4(b) \ k_4(c) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \ | \ \llbracket \operatorname{co} \rhd_{k_4} \ \mathbf{0} \rrbracket \ | \ \llbracket \overline{p}\operatorname{co} \rhd_{k_4} \ \mathbf{0} \rrbracket \\ & \frac{\tau}{} & \operatorname{communication} \\ & k_5(a) \ k_5(b) \ k_5(c) \rhd \llbracket \operatorname{co} \rhd_{k_5} \ \mathbf{0} \rrbracket \ | \ \llbracket \operatorname{co} \rhd_{k_5} \ \mathbf{0} \rrbracket \ | \ \llbracket \operatorname{co} \rhd_{k_5} \ \mathbf{0} \rrbracket \\ & \operatorname{distributed commit} \end{array}$$

 $k_5(co) k_5(co) k_5(co) \triangleright 0 \mid 0 \mid 0$

 $k_5(co) k_5(co) k_5(co) > \mathbf{0} | \mathbf{0} | \mathbf{0}$

$$\begin{array}{c} \text{imple} \\ & \varepsilon \rhd \llbracket a.p.\operatorname{co} \rhd_{l_1} \ \mathbf{0} \rrbracket \mid \llbracket b.q.\operatorname{co} \rhd_{l_2} \ \mathbf{0} \rrbracket \mid \llbracket c.\overline{q}.\overline{p}.\operatorname{co} \rhd_{l_3} \ \mathbf{0} \rrbracket \\ & \frac{k_1(a)}{} & \operatorname{fresh} k_1 \\ & k_1(a) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \mid \llbracket b.q.\operatorname{co} \rhd_{l_2} \ \mathbf{0} \rrbracket \mid \llbracket c.\overline{q}.\overline{p}.\operatorname{co} \rhd_{l_3} \ \mathbf{0} \rrbracket \\ & \frac{k_2(b)}{} & \operatorname{fresh} k_2 \\ & k_1(a) \ k_2(b) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \mid \llbracket q.\operatorname{co} \rhd_{k_2} \ \mathbf{0} \rrbracket \mid \llbracket c.\overline{q}.\overline{p}.\operatorname{co} \rhd_{l_3} \ \mathbf{0} \rrbracket \\ & \frac{k_3(c)}{} & \operatorname{fresh} k_3 \\ & k_1(a) \ k_2(b) \ k_3(c) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \mid \llbracket q.\operatorname{co} \rhd_{k_2} \ \mathbf{0} \rrbracket \mid \llbracket \overline{q}.\overline{p}.\operatorname{co} \rhd_{k_3} \ \mathbf{0} \rrbracket \\ & \frac{\tau}{} & \operatorname{communication} \\ & k_1(a) \ k_4(b) \ k_4(c) \rhd \llbracket p.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \mid \llbracket \operatorname{co} \rhd_{k_4} \ \mathbf{0} \rrbracket \mid \llbracket \overline{p}\operatorname{co} \rhd_{k_4} \ \mathbf{0} \rrbracket \\ & \frac{\tau}{} & \operatorname{communication} \\ & k_5(a) \ k_5(b) \ k_5(c) \rhd \llbracket \operatorname{co} \rhd_{k_5} \ \mathbf{0} \rrbracket \mid \llbracket \operatorname{co} \rhd_{k_5} \ \mathbf{0} \rrbracket \mid \llbracket \operatorname{co} \rhd_{k_5} \ \mathbf{0} \rrbracket \\ & \frac{\tau}{} & \operatorname{distributed commit} \end{array}$$

(ㅁㅏㅓఠㅏㅓㅌㅏㅣㅌ

What is recorded in R?

 $\mathcal{R}: I \longrightarrow_{\text{finite}} \{ k(a), k(co), k(ab) \mid k \text{ a transaction, a an action } \}$

▶ I: an index set

Intuition: $R \triangleright P$

 $\mathcal{R}(i) = k(a)$: k is the current name (in P) of transaction used in ith external interaction

Note: Historical names are forgotten

What is recorded in R?

 $\mathcal{R}: I \longrightarrow_{\text{finite}} \{ k(a), k(co), k(ab) \mid k \text{ a transaction, a an action } \}$

▶ I: an index set

Intuition: $R \triangleright P$

 $\mathcal{R}(i) = k(a)$: k is the current name (in P) of transaction used in ith external interaction

Note: Historical names are forgotten

History actions: inference rules

some

- External actions
- Committing/aborting rules

broadcasts

- Communication
- Contextual rules
- Housekeeping rules

History actions: inference rules

Tentative external actions:

k fresh

$$\begin{array}{ccc} P \xrightarrow{a} P' & \text{in CCS} \\ \\ \mathcal{R} \rhd \llbracket P \rhd_{I} Q \rrbracket & \xrightarrow{k(a)} & \mathcal{R}_{\{k/I\}}, \ k(a) \rhd \llbracket P' \rhd_{k} Q \rrbracket \end{array}$$

$$\mathcal{R} \rhd \Sigma \mu_i.P_i \xrightarrow{k(a)} \mathcal{R}, k(a) \rhd \llbracket P_j \mid \mathsf{co} \rhd_k \Sigma \mu_i.P_i \rrbracket \quad \mu_j = a$$

Intuition:

k is a fresh transaction in the environment requesting a communication on a

History actions: inference rules

Communication

$$\begin{array}{ccc}
\mathcal{R} \rhd P & \xrightarrow{k(a)} & \mathcal{R}\sigma, k(a) \rhd P' \\
\underline{\mathcal{K} \rhd Q} & \xrightarrow{k(\overline{a})} & \mathcal{K}\pi, k(\overline{a}) \rhd Q' \\
\hline
\mathcal{R}, \mathcal{K} \rhd P \mid Q & \xrightarrow{\tau} & \mathcal{R}\sigma\pi, \mathcal{K}\pi\sigma \rhd P' \mid Q'
\end{array}$$

Intuition:

- standard CCS communication rule
- histories need updating

History actions: Committing/Aborting

$$\frac{P \stackrel{\text{co}}{\rightarrow} P' \qquad \text{in CCS}}{\mathcal{R} \rhd \llbracket P \rhd_k \ Q \rrbracket \xrightarrow{\tau}_{\text{co} k} \mathcal{R} \backslash_{\text{co}} k \rhd P}$$

Intuition:

▶ $\mathcal{R} \setminus_{co} k$ records that all tentative actions k(a) are now permanent transforms every k(a) in \mathcal{R} to k(co)

Example

$$k_3(a) k_2(b) k_3(c) \triangleright \llbracket \text{co.} P \triangleright_{k_3} \mathbf{0} \rrbracket \mid \llbracket b.\text{co.} R \triangleright_{k_2} \mathbf{0} \rrbracket \mid \llbracket \text{co.} Q \triangleright_{k_3} \mathbf{0} \rrbracket$$

$$\xrightarrow{\tau}_{\text{co}k}$$

 $k_3(co) k_2(b) k_3(co) \triangleright P \mid [b.co.R \triangleright_{k_2} 0] \mid Q$

History actions: Committing/Aborting

$$\frac{P \overset{\text{(R-CO)}}{\rightarrow} P' \qquad \text{in CCS}}{\mathcal{R} \rhd \llbracket P \rhd_k \ Q \rrbracket \xrightarrow{\tau}_{\text{co}k} \mathcal{R} \setminus_{\text{co}} k \rhd P}$$

Intuition:

▶ $\mathcal{R} \setminus_{co} k$ records that all tentative actions k(a) are now permanent transforms every k(a) in \mathcal{R} to k(co)

$$k_3(a) k_2(b) k_3(c)
ho \llbracket \text{co.} P
ho_{k_3} \ \mathbf{0} \rrbracket \mid \llbracket b.\text{co.} R
ho_{k_2} \ \mathbf{0} \rrbracket \mid \llbracket \text{co.} Q
ho_{k_3} \ \mathbf{0} \rrbracket$$

$$\xrightarrow{\tau}_{\text{co}k} k_3(\text{co}) k_2(b) k_3(\text{co})
ho P \mid \llbracket b.\text{co.} R
ho_{k_3} \ \mathbf{0} \rrbracket \mid Q$$

History actions: Committing/Aborting

```
(R-CO) ...

(R-BCAST)

\mathcal{R} \rhd P \xrightarrow{\tau}_{\operatorname{cok}} \mathcal{R}' \rhd P'

\mathcal{K} \rhd Q \xrightarrow{\tau}_{\operatorname{cok}} \mathcal{K}' \rhd Q'

\mathcal{R}, \mathcal{K} \rhd P \mid Q \xrightarrow{\tau}_{\operatorname{cok}} \mathcal{R}', \mathcal{K}' \rhd P \mid Q

(R-IGNORE)

\mathcal{R} \rhd P \xrightarrow{\tau}_{\operatorname{cok}} \mathcal{R}' \rhd P'

\mathcal{R}. \mathcal{K} \rhd P \mid Q \xrightarrow{\tau}_{\operatorname{cok}} \mathcal{R}', \mathcal{K} \rhd P \mid Q

k fresh to \mathcal{K} \rhd Q
```

Intuition:

Co-operating Transactions

► All components of the distributed transaction *k* must commit

 $\stackrel{\mathsf{co}}{\to}$ simultaneously

History bisimulations

$$\mathcal{R} \rhd P \approx_{\mathsf{bisim}} \mathcal{K} \rhd Q$$

The largest relation over configurations such that, if $\mathcal{R} \rhd P \approx_{\mathsf{hisim}} \mathcal{K} \rhd Q$ then, for every μ

- ▶ $\mathcal{R} \rhd P \stackrel{\mu}{\Rightarrow} \mathcal{R}' \rhd P'$ implies $\mathcal{K} \rhd Q \stackrel{\mu}{\Rightarrow} \mathcal{K}' \rhd Q'$ such that $\mathcal{R}' \rhd Q' \approx_{\mathsf{bisim}} \mathcal{K}' \rhd Q'$
- ▶ symmetrically $\mathcal{K} \rhd Q \stackrel{\mu}{\Rightarrow} \mathcal{K}' \rhd Q'$ implies
- ▶ Records \mathcal{R} , \mathcal{K} are consistent: they agree on committed actions.

Intuition:

Permanent actions must match

Consistent: for every index $i \in I$, $\mathcal{R}(i) = k(co)$ iff $\mathcal{K}(i) = k'(co)$

History bisimulations

$$\mathcal{R} \rhd P \approx_{\mathsf{bisim}} \mathcal{K} \rhd Q$$

The largest relation over configurations such that, if $\mathcal{R} \rhd P \approx_{\mathsf{hisim}} \mathcal{K} \rhd Q$ then, for every μ

- ▶ $\mathcal{R} \rhd P \stackrel{\mu}{\Rightarrow} \mathcal{R}' \rhd P'$ implies $\mathcal{K} \rhd Q \stackrel{\mu}{\Rightarrow} \mathcal{K}' \rhd Q'$ such that $\mathcal{R}' \rhd Q' \approx_{\mathsf{bisim}} \mathcal{K}' \rhd Q'$
- ▶ symmetrically $\mathcal{K} \rhd Q \stackrel{\mu}{\Rightarrow} \mathcal{K}' \rhd Q'$ implies
- ▶ Records \mathcal{R} , \mathcal{K} are consistent: they agree on committed actions.

Intuition:

Permanent actions must match

Consistent: for every index $i \in I$, $\mathcal{R}(i) = k(co)$ iff $\mathcal{K}(i) = k'(co)$

$$\bullet \ \epsilon \rhd Q \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket c.0 \rhd_{k_1} \ 0 \rrbracket \xrightarrow{k_2(c)} k_2(a)k_2(c) \rhd \llbracket 0 \rhd_{k_2} 0 \rrbracket$$

$$\bullet \ \epsilon \rhd P \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket b.co \rhd_{k_1} \ 0 \rrbracket \xrightarrow{k_2(c)} ??$$

Because:
$$\epsilon \rhd P \xrightarrow{k_1(a)} \xrightarrow{k_2(c)} k_1(a)k_2(ab) \rhd \llbracket b.co \rhd_{k_1} \ 0 \rrbracket$$

$$\xrightarrow{\tau}_{ab} k_1(a)k_2(ab) > 0$$

▶ and
$$k_2(a)k_2(b)$$
 \triangleright $\llbracket 0 \triangleright_{k_2} 0 \rrbracket$ $\approx_{\text{bisim}} k_1(a)k_2(ab)$ \triangleright 0

$$\blacktriangleright \ \epsilon \rhd Q \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket c.0 \rhd_{k_1} \ 0 \rrbracket \xrightarrow{k_2(c)} k_2(a) k_2(c) \rhd \llbracket \mathfrak{o} \rhd_{k_2} \mathfrak{o} \rrbracket$$

$$\bullet \ \epsilon \rhd P \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \xrightarrow{k_2(c)} ?$$

$$\blacktriangleright \ \epsilon \rhd Q \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket c.0 \rhd_{k_1} \ 0 \rrbracket \xrightarrow{k_2(c)} k_2(a) k_2(c) \rhd \llbracket \mathfrak{o} \rhd_{k_2} \mathfrak{o} \rrbracket$$

$$\bullet \ \epsilon \rhd P \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \xrightarrow{k_2(c)} ?$$

A solution:

Allow free degenerate tentative actions: $\mathcal{R} \triangleright S \xrightarrow{k(x)} \mathcal{R}, k(ab) \triangleright S$

Because:

$$\bullet \in P \xrightarrow{k_1(a)} \xrightarrow{k_2(c)} k_1(a)k_2(ab) \rhd \llbracket b.co \rhd_{k_1} \ 0 \rrbracket$$

$$\xrightarrow{\tau}_{ab} k_1(a)k_2(ab) \rhd 0$$

$$\blacktriangleright \ \epsilon \rhd Q \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket c.0 \rhd_{k_1} \ 0 \rrbracket \xrightarrow{k_2(c)} k_2(a)k_2(c) \rhd \llbracket 0 \rhd_{k_2} 0 \rrbracket$$

$$\bullet \ \epsilon \rhd P \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} \ \mathbf{0} \rrbracket \xrightarrow{k_2(c)} ?$$

A solution:

Allow free degenerate tentative actions: $\mathcal{R} \rhd S \xrightarrow{k(x)} \mathcal{R}, k(ab) \rhd S$

Because:
$$\epsilon \rhd P \xrightarrow{k_1(a)} \xrightarrow{k_2(c)} k_1(a)k_2(ab) \rhd \llbracket b.co \rhd_{k_1} \ \mathbf{0} \rrbracket$$

$$\xrightarrow{\tau}_{\mathtt{ab}} k_1(a)k_2(\mathtt{ab}) \rhd \mathbf{0}$$

▶ and
$$k_2(a)k_2(b) \rhd \llbracket \mathbf{0} \rhd_{k_2} \mathbf{0} \rrbracket \approx_{\mathsf{bisim}} k_1(a)k_2(\mathsf{ab}) \rhd \mathbf{0}$$

Justifying bisimulations

In TCCSm

$$P \approx_{\mathsf{bisim}} Q$$
 iff $P \approx_{\mathsf{cxt}} Q$

History bisimulations give a sound and complete proof method for contextual equivalence of transactions

Fossacs 2014

Inequivalent systems

In CCS:

- $P = a.c.(d.0 + e.0) + a.c.e.0 \approx_{cxt} a.(c.d.0 + c.e.0) = Q$
- ▶ because P ≉_{bisim} Q
- because P and Q satisfy different behavioural properties

$$P \models \langle a \rangle [c](\langle d \rangle \operatorname{tr} \wedge \langle e \rangle \operatorname{tr}) \text{ while } Q \not\models \langle a \rangle [c](\langle d \rangle \operatorname{tr} \wedge \langle e \rangle \operatorname{tr})$$

In TCCSm:

$$P = \begin{bmatrix} a.\text{co} \triangleright_{k_1} & \mathbf{0} \end{bmatrix} \mid \begin{bmatrix} b.\text{co} \triangleright_{k_2} & \mathbf{0} \end{bmatrix}$$

$$Q = \nu p.\overline{p} \mid \begin{bmatrix} a.p.\text{co}.\overline{p} \triangleright_{k_1} & \mathbf{0} \end{bmatrix} \mid \begin{bmatrix} b.p.\text{co}.\overline{p} \triangleright_{k_2} & \mathbf{0} \end{bmatrix}$$

- ► P ≉_{cxt} Q
- ▶ because $P \not\approx_{\text{bisim}} Q$
- ▶ because ???

Inequivalent systems

In CCS:

- $P = a.c.(d.0 + e.0) + a.c.e.0 \approx_{cxt} a.(c.d.0 + c.e.0) = Q$
- ▶ because P ≉_{bisim} Q
- because P and Q satisfy different behavioural properties

$$P \models \langle a \rangle [c](\langle d \rangle \operatorname{tr} \wedge \langle e \rangle \operatorname{tr}) \text{ while } Q \not\models \langle a \rangle [c](\langle d \rangle \operatorname{tr} \wedge \langle e \rangle \operatorname{tr})$$

In TCCSm:

$$P = [a.co \triangleright_{k_1} 0] \mid [b.co \triangleright_{k_2} 0]$$

$$Q = \nu p.\overline{p} \mid [a.p.co.\overline{p} \triangleright_{k_1} 0] \mid [b.p.co.\overline{p} \triangleright_{k_2} 0]$$

- ► P ≉_{cxt} Q
- ▶ because $P \approx_{\text{bisim}} Q$
- ▶ because ???

Inequivalent systems

In CCS:

- $P = a.c.(d.0 + e.0) + a.c.e.0 \approx_{cxt} a.(c.d.0 + c.e.0) = Q$
- ▶ because $P \not\approx_{\text{bisim}} Q$
- because P and Q satisfy different behavioural properties

$$P \models \langle a \rangle [c] (\langle d \rangle \operatorname{tr} \wedge \langle e \rangle \operatorname{tr}) \text{ while } Q \not\models \langle a \rangle [c] (\langle d \rangle \operatorname{tr} \wedge \langle e \rangle \operatorname{tr})$$

In TCCS^m:

$$P = [a.co \triangleright_{k_1} \mathbf{0}] \mid [b.co \triangleright_{k_2} \mathbf{0}]$$

$$Q = \nu p.\overline{p} \mid [a.p.co.\overline{p} \triangleright_{k_1} \mathbf{0}] \mid [b.p.co.\overline{p} \triangleright_{k_2} \mathbf{0}]$$

- P ≉_{cxt} Q
- ▶ because $P \not\approx_{\text{bisim}} Q$
- because ???

In CCS: property logic HML

Properties: ϕ ::= $\langle \mu \rangle \phi$ | $\neg \phi$ | $\wedge_{\{i \in I\}} \phi_i$

Satisfaction:

- $ightharpoonup P \models \langle \mu \rangle \phi \text{ if } P \stackrel{\mu}{\Rightarrow} Q, \text{ where } Q \models \phi$
- $\triangleright P \models \land_{\{i \in I\}} \phi_i \text{ if } \ldots$

Well-known result:

 $P \not\approx_{\mathsf{bisim}} Q$ iff $P \models \phi, Q \not\models \phi$ for some property $\phi \in \mathsf{HML}$

Intuition:

 ϕ is a reason for the different behaviour between P and Q

In $TCCS^m$: Why are P, Q different?

$$P \ = \ \llbracket a.b. \texttt{co} \, \rhd_k \, \, \mathbf{0} \rrbracket \qquad Q = \nu p. \llbracket a. \texttt{co}.p \, \, \rhd_{k_1} \, \, \mathbf{0} \rrbracket \, \, | \, \, \llbracket \overline{p}.b. \texttt{co} \, \, \rhd_{k_2} \, \, \mathbf{0} \rrbracket$$

Intuition:

- ▶ *P* can perform tentative actions *a*, *b* in same transaction, which can subsequently become permanent
- Q can only tentatively perform a, b in independent transactions

Intuition unsupported by current action semantics:

$$\varepsilon \rhd P \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} \emptyset \rrbracket$$

$$\xrightarrow{k_2(b)} k_2(a)k_2(b) \rhd \llbracket b.\operatorname{co} \rhd_{k_2} \emptyset \rrbracket$$

In $TCCS^m$: Why are P, Q different ?

$$P = \llbracket a.b. \mathsf{co} \, \triangleright_k \, \mathbf{0} \rrbracket \qquad Q = \nu p. \llbracket a. \mathsf{co}. p \, \triangleright_{k_1} \, \mathbf{0} \rrbracket \, | \, \llbracket \overline{p}. b. \mathsf{co} \, \triangleright_{k_2} \, \mathbf{0} \rrbracket$$

Intuition:

- ▶ *P* can perform tentative actions *a*, *b* in same transaction, which can subsequently become permanent
- Q can only tentatively perform a, b in independent transactions

Intuition unsupported by current action semantics:

$$\varepsilon \rhd P \xrightarrow{k_1(a)} k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} \mathbf{0} \rrbracket$$

$$\xrightarrow{k_2(b)} k_2(a)k_2(b) \rhd \llbracket b.\operatorname{co} \rhd_{k_2} \mathbf{0} \rrbracket$$

In $TCCS^m$: Why are P, Q different?

$$P = \llbracket a.b.\operatorname{co} \, \triangleright_k \, \mathbf{0} \rrbracket \qquad Q = \nu p. \llbracket a.\operatorname{co}.p \, \triangleright_{k_1} \, \mathbf{0} \rrbracket \mid \llbracket \overline{p}.b.\operatorname{co} \, \triangleright_{k_2} \, \mathbf{0} \rrbracket$$

Intuition:

- ▶ *P* can perform tentative actions *a*, *b* in same transaction, which can subsequently become permanent
- Q can only tentatively perform a, b in independent transactions

Intuition unsupported by current action semantics:

$$\begin{array}{ccc} \varepsilon \rhd P & \xrightarrow{k_1(a)} & k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} & \mathbf{0} \rrbracket \\ & \xrightarrow{k_2(b)} & k_2(a)k_2(b) \rhd \llbracket b.\operatorname{co} \rhd_{k_2} & \mathbf{0} \rrbracket \end{array}$$

History is important

Recall $\mathcal{R} \triangleright P$

- ▶ $\mathcal{R}: I \longrightarrow \{k(a), k(co), k(ab) \mid k \text{ a transaction name }\}$
- $ightharpoonup \mathcal{R}(i) = k(a)$: k is the current name in P of ith interaction

New Configurations:

remember historic actions

 $H; \mathcal{R} \triangleright P$ where

- ► H equivalence relation over names
 - ▶ $H \models k_1 \sim k_2$ means k_1, k_2 are the same transactions
- \triangleright $\mathcal{R}(i)$ is the historic name used in ith interaction

$$\varepsilon \rhd P \xrightarrow{k_1(a)} \{k_1\} : k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} \emptyset \rrbracket$$

$$\xrightarrow{k_2(b)} \{k_1, k_2\}; k_1(a)k_2(b) \rhd \llbracket \operatorname{co} \rhd_{k_2} \emptyset \rrbracket$$

History is important

Recall $\mathcal{R} \triangleright P$

- ▶ $\mathcal{R}: I \longrightarrow \{k(a), k(co), k(ab) \mid k \text{ a transaction name }\}$
- $ightharpoonup \mathcal{R}(i) = k(a)$: k is the current name in P of ith interaction

New Configurations:

remember historic actions

 $H; \mathcal{R} \triangleright P$ where

- H equivalence relation over names
 - ▶ $H \models k_1 \sim k_2$ means k_1, k_2 are the same transactions
- \triangleright $\mathcal{R}(i)$ is the historic name used in ith interaction

$$\varepsilon \rhd P \xrightarrow{k_1(a)} \{k_1\} : k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} \emptyset \rrbracket$$

$$\xrightarrow{k_2(b)} \{k_1, k_2\}; k_1(a)k_2(b) \rhd \llbracket \operatorname{co} \rhd_{k_2} \emptyset \rrbracket$$

History is important

Recall $\mathcal{R} \triangleright P$

- $ightharpoonup \mathcal{R}: I \longrightarrow \{k(a), k(co), k(ab) \mid k \text{ a transaction name }\}$
- $ightharpoonup \mathcal{R}(i) = k(a)$: k is the current name in P of ith interaction

New Configurations:

remember historic actions

 $H; \mathcal{R} \triangleright P$ where

- H equivalence relation over names
 - ▶ $H \models k_1 \sim k_2$ means k_1, k_2 are the same transactions
- \triangleright $\mathcal{R}(i)$ is the historic name used in ith interaction

$$\varepsilon \rhd P \xrightarrow{k_1(a)} \{k_1\} : k_1(a) \rhd \llbracket b.\operatorname{co} \rhd_{k_1} \mathbf{0} \rrbracket$$

$$\xrightarrow{k_2(b)} \{k_1, k_2\}; k_1(a)k_2(b) \rhd \llbracket \operatorname{co} \rhd_{k_2} \mathbf{0} \rrbracket$$

Properties: ϕ ::= $\langle k(a) \rangle \phi \mid \langle \tau \rangle \phi \mid \operatorname{Isco}(k) \mid \neg \phi \mid \land_{\{i \in I\}} \phi_i$

Satisfaction:

- ▶ $H; \mathcal{R} \rhd P \models \langle k(a) \rangle \phi$ if $H; \mathcal{R} \rhd P \xrightarrow{k'(a)} H'; \mathcal{R}' \rhd Q$, where

 - $E \models k \sim k'$
- ▶ H; $\mathcal{R} \triangleright P \models \text{Isco}(k)$ if $\exists i$, $\mathcal{R}(i) = \frac{k'(co)}{k'(co)}$, $H \models k \sim \frac{k'}{k'(co)}$

$$P = [a.b.co \triangleright_{k_1} 0] \qquad Q = \nu p.[a.p.co \triangleright_{k_1} 0] \mid [b.\overline{p}.co \triangleright_{k_2} 0]$$

$$\epsilon \triangleright P \models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

Properties: $\phi ::= \langle k(a) \rangle \phi \mid \langle \tau \rangle \phi \mid \operatorname{Isco}(k) \mid \neg \phi \mid \wedge_{\{i \in I\}} \phi_i$

Satisfaction:

- ▶ $H; \mathcal{R} \rhd P \models \langle k(a) \rangle \phi$ if $H; \mathcal{R} \rhd P \xrightarrow{k'(a)} H'; \mathcal{R}' \rhd Q$, where
 - \vdash H'; $\mathcal{R}' \rhd Q \models \phi$
 - $ightharpoonup E \models k \sim k'$
- ▶ H; $\mathcal{R} \triangleright P \models \text{Isco}(k)$ if $\exists i$, $\mathcal{R}(i) = \frac{k'(co)}{k'(co)}$, $H \models k \sim \frac{k'}{k'(co)}$

$$P = [a.b.co \triangleright_{k_1} 0] \qquad Q = \nu p.[a.p.co \triangleright_{k_1} 0] \mid [b.\overline{p}.co \triangleright_{k_2} 0]$$

$$\epsilon \triangleright P \models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

$$\epsilon \triangleright Q \not\models \dots$$

Conjecture:

 $P \not\approx_{\mathsf{bisim}} Q \text{ iff } P \models \phi, \ Q \not\models \phi \text{ for some property } \phi \in \mathsf{trHML}$

$$P = [a.co \triangleright_{k_1} 0] \mid [b.co \triangleright_{k_2} 0]$$

$$Q = \nu p.\overline{p} \mid [a.p.co.\overline{p} \triangleright_{k_1} 0] \mid [b.p.co.\overline{p} \triangleright_{k_2} 0]$$

$$P \models ?????$$
 $Q \not\models ????$

$$P \models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

$$O \vdash \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

Conjecture:

 $P \not\approx_{\mathsf{bisim}} Q \text{ iff } P \models \phi, \ Q \not\models \phi \text{ for some property } \phi \in \mathsf{trHML}$

$$P = [a.co \triangleright_{k_1} \mathbf{0}] \mid [b.co \triangleright_{k_2} \mathbf{0}]$$

$$Q = \nu p.\overline{p} \mid [a.p.co.\overline{p} \triangleright_{k_1} \mathbf{0}] \mid [b.p.co.\overline{p} \triangleright_{k_2} \mathbf{0}]$$

$$P \models ?????$$
 $Q \not\models ????$

$$P \models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

$$Q \not\models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

Conjecture:

 $P \not\approx_{\mathsf{bisim}} Q \text{ iff } P \models \phi, \ Q \not\models \phi \text{ for some property } \phi \in \mathsf{trHML}$

$$P = [a.co \triangleright_{k_1} \mathbf{0}] \mid [b.co \triangleright_{k_2} \mathbf{0}]$$

$$Q = \nu p.\overline{p} \mid [a.p.co.\overline{p} \triangleright_{k_1} \mathbf{0}] \mid [b.p.co.\overline{p} \triangleright_{k_2} \mathbf{0}]$$

$$P \models ?????$$
 $Q \not\models ????$

$$P \models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

$$Q \not\models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

Conjecture:

 $P \not\approx_{\mathsf{bisim}} Q \text{ iff } P \models \phi, \ Q \not\models \phi \text{ for some property } \phi \in \mathsf{trHML}$

$$P = [a.co \triangleright_{k_1} 0] \mid [b.co \triangleright_{k_2} 0]$$

$$Q = \nu p.\overline{p} \mid [a.p.co.\overline{p} \triangleright_{k_1} 0] \mid [b.p.co.\overline{p} \triangleright_{k_2} 0]$$

$$P \models ?????$$
 $Q \not\models ????$

$$P \models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

$$Q \not\models \langle k(a) \rangle \langle k(b) \rangle \operatorname{Isco}(k)$$

Some work done. More to do.

- Language design and implementation
- Behavioural semantics
 - Decision procedures for equivalence upcoming PhD thesis: Carlo Spaccasassi
 - More expressive transaction constructs.

eg. nested transactions

- Variations
 - Reversible programming languages
 - Web services: long running transactions with compensations
-

The end

THANKS

Joint work with Vasileois Koutavas, Carlo Spaccasassi, Edsko de Vries

