Behavioural Equivalences for Co-operating
Transactions

Matthew Hennessy
joint work with Vasileois Koutavas, Carlo Spaccasassi, Edsko de Vries

Concur, September 2015

@ Lero pmssemee

W TRINITY COL

LEGE DUBLIN

1/53

_ Co-operating Transactions _ TransCCS___ Behaviour ____History bisimulations _____ Property logics _
Outline

Co-operating Transactions what are they?

TransCCS

Behaviour

History bisimulations

Property logics

STM: Software Transactional Memory

v

Database technology applied to software

> concurrency control: atomic memory transactions

v

lock-free programming in multithreaded programmes

v

threads run optimistically

v

conflicts are automatically rolled back by system

W TRINITY COLLEGE DUBLIN

3/53

STM: Software Transactional Memory

v

Database technology applied to software

> concurrency control: atomic memory transactions

v

lock-free programming in multithreaded programmes

v

threads run optimistically

v

conflicts are automatically rolled back by system

Implementations:

» Haskell, OCaml, Csharp, Intel Haswell architecture
Issues:

> Language Design

> Implementation strategies

> Semantics what should happen when programs are run

W TRINITY COLLEGE DUBLIN

3/53

Standard Transactions on which st is based

» Transactions provide an abstraction for error recovery in a
concurrent setting.
» Guarantees:
» Atomicity: Each transaction either runs in its entirety
(commits) or not at all
» Consistency: When faults are detected the transaction is
automatically rolled-back
» Isolation: The effects of a transaction are concealed from the
rest of the system until the transaction commits

» Durability: After a transaction commits, its effects are
permanent

W TRINITY COLLEGE DUBLIN

Standard Transactions on which st is based

» Transactions provide an abstraction for error recovery in a
concurrent setting.
» Guarantees:
» Atomicity: Each transaction either runs in its entirety
(commits) or not at all
» Consistency: When faults are detected the transaction is
automatically rolled-back
» Isolation: The effects of a transaction are concealed from the
rest of the system until the transaction commits
> Durability: After a transaction commits, its effects are
permanent
> Isolation:

» Higher levels limit concurrency
» Lower levels have implementation difficulties and precise
semantic understanding

W TRINITY COLLEGE DUBLIN

Co-operating Transactions

Communicating/Co-operating Transactions

» We drop isolation completely:
» There is no limit on the co-operation/communication between
a transaction and its environment.
» There is no barrier to concurrency
» Understanding the behaviour of these new transactional
systems is problematic

Co-operating Transactions

Communicating/Co-operating Transactions

> We drop isolation completely:
» There is no limit on the co-operation/communication between
a transaction and its environment.
» There is no barrier to concurrency
» Understanding the behaviour of these new transactional
systems is problematic
» Should guarantee:
» Atomicity: Each transaction will either run in its entirety or
not at all
» Consistency: When faults are detected the transaction is
automatically rolled-back, together with all effects of the
transaction on its environment
» Durability: After all transactions that have interacted commit,
their effects are permanent (coordinated checkpointing)

W TRINITY COLLEGE DUBLIN

5/53

Co-operating Transactions

Programming with Co-operating Transactions

Add to your favourite programming language:

» atomic[...... 1

» commands commit and abort&retry

W TRINITY COLLEGE DUBLIN

6/53

Co-operating Transactions

Programming with Co-operating Transactions
Add to your favourite programming language:
» atomic[...... 1
» commands commit and abort&retry

Example: three-way rendezvous

Py{| P2 [P3 || Pa
Problem:
» P; process/transaction subject to failure

» Some coalition of three from Py, P>, P3, P, should decide to
collaborate

W TRINITY COLLEGE DUBLIN

6/53

Co-operating Transactions

Programming with Co-operating Transactions

Add to your favourite programming language:

» atomic[...... 1

» commands commit and abort&retry

Example: three-way rendezvous

Py{| P2 [P3 || Pa
Problem:
» P; process/transaction subject to failure

» Some coalition of three from Py, P>, P3, P, should decide to
collaborate
Result:

» Each P; in the successful coalition outputs id of its partners

on channel out;
W

LEGE DUBLIN

6/53

Co-operating Transactions

Example: three-way rendezvous

Py || P2 || P || P4

Algorithm for Pp:

» Broadcast id n randomly to two arbitrary partners

> Receive ids from two random partners

> Propose coalition with these partners

» Confirm that partners are in agreement:

» if YES, commit and report
» if NO, abort&retry

W TRINITY COL

LEGE DUBLIN

7/53

Co-operating Transactions

Example: three-way rendezvous

Py || P2 || P || P4

Algorithm for Pp:

» Broadcast id n randomly to two arbitrary partners
bY(n) | b(n)

> Receive ids from two random partners b?(y).b?(z)

» Propose coalition with these partners s,!(n, z).s,!(n,y)

» Confirm that partners are in agreement:

» if YES, commit and report
» if NO, abort&retry

W TRINITY COLLEGE DUBLIN

7/53

Co-operating Transactions

Example: three-way rendezvous

Py P2 || P || P4

P, < bl{(n) | bY{n)|
atomic[b?(y).b?(z).
s,!(n, z) .s;!(n,y). proposing
sn?(v1,21) -5n?(y2, 22) - confirming
if {y,z} = {y1, 21} = {12, 2}
then commit | out,!(y, z)

elseabrt&retry |

Co-operating Transactions

Co-operating Transactions: Issues
» Language Design and Implementation

> Semant|cs what should happen when programs are run

W TRINITY COL

LEGE DUBLIN

9/53

Co-operating Transactions

Co-operating Transactions: Issues

» Language Design and Implementation
» Transaction Synchronisers (Luchangco et al 2005)
cJoin with commits Bruni, Melgratti, Montanari ENTCS 2004
Transactional Events for ML (Fluet, Grossman et al. ICFP 2008)
Communication Memory Transactions (Lesani, Palsberg PPoPP 2011)
... Abstractions for Concurrent Consensus (Spaccasassi, Koutavas, Trends

vV vy VvVYyy

in Functional Programming 2013)

> Semant|cs what should happen when programs are run

» Topic of todays talk

Approach:

> Take a well-studied small language, with well understood
semantic theory: CCS

» extend with transactional constructs

> extend existing semantic theory B oy

9/53

TransCCS

CcCSs
Syntax: P,Q == > uj.P; guarded choice ui € Act,
| P|Q parallel
| vaP hiding
\

recX.P recursion

W TRINITY COLLEGE DUBLIN

10/53

TransCCS Sehavio story bis ations Propert

Syntax: P,Q > pi.P; guarded choice ui € Act,

| P|Q parallel
| vaP hiding
| recX.P recursion

Minimal concurrent programming/specification language:

» Act,: abstract actions supporting
communication /co-operation

» Concurrency: P | Q: independent concurrent processes
» Local resources: va.P: action ais local to P

> lteration/Recursion: recX.P

‘a € Act < needs co-operation of — ae Act‘

W TRINITY COLLEGE DUBLIN

10/53

CCS EXGCUtIng prOCGSSGS P _> Q Reduction semantics:

» Co-operation/Communication:
(ecown) Y piPr| Y v Qo Pil @ fu=m

» Contextual rules:

(R-PAR) (r-NEW)
P— P P— P
PlQ—P|Q va.P — va.P’

> Housekeeping rules:

(r-rec) recX.P — P{recX.P/X}

TCCSm Fossacs 2014

Syntax: P, Q CCS syntax

[P >k Q] running transaction named k
co.P commit

[P» Q] uninitiated transaction

W TRINITY COLLEGE DUBLIN

12/53

TCCSm Fossacs 2014

Syntax: P, Q CCS syntax

[P >k Q] running transaction named k
co.P commit

[P» Q] uninitiated transaction

Transaction [P >, Q]:

» execute P to completion (commit)
> subject to random aborts

» if aborted, roll back environmental impact of P and initiate Q

Simplification: in [P >y Q] bodies P and Q do not contain active transactions

W TRINITY COLLEGE DUBLIN

12/53

TransCCS

Examples

[a.b.co >k 0]
pX.[a.(b.co+ c.co) >y X]
uX.[a.b.co >y X]

[a.co >y, O] | [b.co >k, 0]

[a.b.co+ b.a.co >k 0]

vp.Ja.co.p >k, O] | [p-b.co >k, 0]
puX.Ja.b.co+ a.c.co) >y X]

puX.Ja.b.co + a.c.0) by X]

vp.p | [a.p.co.p >k, O] | [b.p.co.p >k, 0]

vp.Ja.p.co >y, O] | [b.p.co >k, 0]

TransCCS

EXGCUtIng Transactlons P % Q reduction semantics

v

Co-operation/Communication

Contextual rules

v

v

Housekeeping rules

v

aborts/commits

v

roll back management

14/53

TransCCS

EXGCUtIng Transactlons P % Q reduction semantics

v

Co-operation/Communication

Contextual rules

v

v

Housekeeping rules

v

aborts/commits eg. [Pk Q] — @ random abort

v

roll back management

14/53

Co-operation/Communication

Co-operation means shared destiny:

[p1.a1.az.co >y a] | [p1.co.c + po.co.c >y c] | [p2.b1.ba.co >y, b

W TRINITY COLLEGE DUBLIN

15/53

Co-operation/Communication

Co-operation means shared destiny:

[p1.a1.az.co >y a] | [p1.co.c + po.co.c >y c] | [p2.b1.ba.co >y, b
%

[[al.ag.co D> a]] ‘ [[CO.C D>k C]] ‘ [[p2.b1.b2.co > b]]
i, ! both succeed together, or both fail

W TRINITY COLLEGE DUBLIN

15/53

Co-operation/Communication

Co-operation means shared destiny:
[p1.a1.az.co >y a] | [p1.co.c + po.co.c >y c] | [p2.b1.ba.co >y, b
%

[[pl.al.az.co > a]] | [[CO.C D> C]] | [[bl.bg.co D> b]]
l, | both succeed together, or both fail

W TRINITY COLLEGE DUBLIN

15/53

Co-operation/Communication

Co-operation means shared destiny:

[p1.a1.az.co >y a] | [p1.co.c + po.co.c >y c] | [p2.b1.ba.co >y, b
N
[ai.az.co >k a] | [co.c >k c] | [p2.bi.b2.co >y, b]
i, ! both succeed together, or both fail
N
[p1.a1.a2.co >y a] | [co.c > c] | [b1.b2.co >y b]
l», | both succeed together, or both fail

» shared destiny via fresh renaming of transactions

> shared destiny via distributed transactions B oy

15/53

TransCCS

Co-operation/Communication: reduction semantics

» Communication:

(R-COMM)

[[Rl | ZM,‘P,' >y —H | [{R2 | ZVJQj D _]]

_>

[[Rl | P, l>k —II | IIRz | QJ l>k —]] |f Uj :E k fresh
W

16/53

TransCCS

Co-operation/Communication: reduction semantics

» Communication:

(R-cOMM)

[[Rl | ZM:‘P,' > —ﬂ | HRz ! ZVJQJ- >, —]]

_>

[Ri| Pivk =] [[R] Qj >k —] if v; =T1; k fresh

» Contextual rules:

» Housekeeping rules:

W TRINITY COLLEGE DUBLIN

16/53

TransCCS

Example

[a.b.co >y, O] | [b.co >y, 8] | [a.co.A >y, B]

TransCCS

Example

[a.b.co >y, O] | [b.co >y, 8] | [a.co.A >y, B]

— [b.co > 0] | [b.co bk, 8] | [co.A >y B]

TransCCS

Example

[a.b.co >y, O] | [b.co >y, 8] | [a.co.A >y, B]

— [b.co > 0] | [b.co bk, 8] | [co.A >y B]

— [co >y 0] | [co >/ O] | [co.A > B]

TransCCS

Example

[a.b.co >y, O] | [b.co >y, 8] | [a.co.A >y, B]

— [b.co > 0] | [b.co bk, 8] | [co.A >y B]

— [co >y 0] | [co >/ O] | [co.A > B]

—0|0|A via distributed COMMIt /

TransCCS

Example

[a.b.co >y, O] | [b.co >y, 8] | [a.co.A >y, B]

— [b.co > 0] | [b.co bk, 8] | [co.A >y B]

— [co >y 0] | [co >/ O] | [co.A > B]

—0|0|B via distributed abort /

TransCCS

Environment roll-back: reduction semantics

(R-ROLLBACK)
ZM:‘P; | [[Rz | ZVij D —]]

%

[[P,' | co Dy Z/L,’P,']] | [[R2 | Qj D>k —]] if Vi = [j k fresh

rollback as compensation

TransCCS

Environment roll-back: reduction semantics

(R-ROLLBACK)
ZM:‘P; | [[Rz | ZVij D —]]

%

[[P,' | CO Dy ZN;P;]] | [[R2 | Qj D —]] if Vi = [j k fresh

rollback as compensation

TransCCS

Example

T1 = puX.[pi.co.ar by, X] T2 = pX.[pr.co.ar >y, X]

(p1.b1 + p2.b2) ‘ T1 | T2

— [[bl | co Dy pi.b1 +p2.b2)]] ‘ [co.al Dk Tl]] ’T2 using p1
— (pl.bl + pg.bz) ‘ T1 | T2 abort k

— [b2 | co >k pi.br+ p2.b2)] | T1 | [co.a2 >k T2] using p>
— b2 ’32 commit k

TransCCS

Example

T1 = puX.[pi.co.ar by, X] T2 = pX.[pr.co.ar >y, X]

(p1.b1 + p2.b2) ‘ T1 | T2

— b1 | co >k pi.b1 + po.bp)] | [co.a1 bk T1] | T2 using p.
— (pl.bl + p2.b2) ‘ T1 | T2 abort k

— [b2 | co >k pi.br+ p2.b2)] | T1 | [co.a2 >k T2] using p>
— by | a commit k

Environment roll-back:
» Original environment (p;.b1 + ps.bo) re-instated

» reduction semantics supports consistency inforrig M hTCLLECE DUBLIY

19/53

Behaviour

Behavioural equivalences

What transactions should be behavourally indistinguishable?

£~
)

behav

uX.[P | co bk X]

puX.Ja.b.co+ a.c.0) >y X]

{4~

behav

uX.[a.b.co >y X]

?
ijehav Vpp ‘

[a.co >y, O] | [b.co >k, 0]
la.p.co.p >k, O] | [b.p.co.p >k, 0]

W TRINITY COLLEGE DUBLIN

20/53

Behaviour

Behavioural equivalences

What transactions should be behavourally indistinguishable?

£~
)

behav

uX.[P | co bk X]

puX.Ja.b.co+ a.c.0) >y X]

{4~

behav

uX.[a.b.co >y X]

?
ijehav Vpp ‘

[a.co >y, O] | [b.co >k, 0]
la.p.co.p >k, O] | [b.p.co.p >k, 0]

Example:
The well known equivalence: trace equivalence Rotr

20/53

W TRINITY COLLEGE DUBLIN

Behaviour

CCS: Action semantics
CCS doing actions:

P 2 Q whenever P |a.0— Qo o fresh

CCS doing sequences:
P = Q, s € Act*, whenever P |5.0 = Q| ®

CCS Trace equivalence:
TR(P) = {s € Act* | P>}

‘ P ~ Q whenever TR(P) = TR(Q) ‘

TCCS™: cmmivea Action semantics

Transactions doing commited aCtions:
P == Q whenever P | 3.0 — Q | ® o fresh

Transaction doing commited SEQqUENCES:
P> Q, s € Act*, whenever P [5.0 — Q | ®

cTrace equivalence for transactions:
cTR(P) = {s € Act* | P=}

‘ P ~cr Q whenever cTR(P) = CTR(Q)‘

W TRINITY COLLEGE DUBLIN

22/53

Behaviour

Examples: trace equivalence

P =[a.b.co >y 0] Q=wvp.Ja.co.p >y, 0] | [p.-b.co >k, 0]

P ’#ctr Q:

W TRINITY COLLEGE DUBLIN

23/53

Behaviour

Examples: trace equivalence

P =[a.b.co >y 0] Q=wvp.Ja.co.p >y, 0] | [p.-b.co >k, 0]

P ’#ctr Q:
> CTR(P) = {E, ab} not prefix-closed
» cTR(Q) = {¢, a, ab}

W TRINITY COLLEGE DUBLIN

23/53

Behaviour

Examples: trace equivalence

P =[a.b.co >y 0] Q=wvp.Ja.co.p >y, 0] | [p.-b.co >k, 0]

P ’#ctr Q:
> CTR(P) = {E, ab} not prefix-closed
» cTR(Q) = {¢, a, ab}

R = uX.[a.(b.co+ c.®) by X] S =pX.[a.b.co+ a.c.0) >y X]

R =t S:

> CTR(R) = {5, ab} not prefix-closed
> CTR(S) = {5, ab} not prefix-closed

Behaviour

Examples: trace equivalence

P =[a.b.co >y 0] Q=wvp.Ja.co.p >y, 0] | [p.-b.co >k, 0]

P ’#ctr Q:
> CTR(P) = {E, ab} not prefix-closed
» cTR(Q) = {¢, a, ab}

R = uX.[a.(b.co+ c.®) by X] S =pX.[a.b.co+ a.c.0) >y X]

R =t S:
> CTR(R) = {5, ab} not prefix-closed
> CTR(S) = {5, ab} not prefix-closed
’ cTR supports atomicity‘ s

23/53

Behaviour

Justifying Trace equivalence: Safety properties
Safety: “Nothing bad will happen” [Lamport'77]

> A safety property can be formulated as a safety test T® which
signals on fresh channel m when it detects the bad behaviour

Definition (Passing tests)
P fails safety test T® whenever P | T —* P' | ®

Behaviour

Justifying Trace equivalence: Safety properties
Safety: “Nothing bad will happen” [Lamport'77]

> A safety property can be formulated as a safety test T® which
signals on fresh channel m when it detects the bad behaviour

Definition (Passing tests)
P fails safety test T® whenever P | T® —* P' | o

Example tests:
> 'U/X(QX + err.(Y)) can not perform err while performing any sequence of as

» T =err.m | a.b cannot perform err when a followed by b is offered.

W TRINITY COLLEGE DUBLIN

24/53

Behaviour

Justifying Trace equivalence: Safety properties
Safety: “Nothing bad will happen” [Lamport'77]

> A safety property can be formulated as a safety test T® which
signals on fresh channel m when it detects the bad behaviour

Definition (Passing tests)
P fails safety test T® whenever P | T® —* P' | o

Example tests:
> 1X.(a.X 4 err.m) cannot perform err while performing any sequence of as
> TO =err.o| 3.5 can not perform err when a followed by b is offered.
Examples:
» pX.[a.b.co | err >y X] fails safety test T®

» pX.[a.b.co+erf >y X]passes safety test T R

24/53

Justifying Traces

In CCS: well-known
Rty Q if and Only for every T,

P passes safety test T <= @ passes safety test T

W TRINITY COLLEGE DUBLIN

25/53

Justifying Traces

In CC5: well-known
P Rtr Q |f and Only for every 77,

P passes safety test T <= @ passes safety test T

In TCCS™: conjecture

ity Q if and Only for every T?,

P passes safety test T <= @ passes safety test T

See: Concur 2010 for proof in different language of transactions.

W TRINITY COLLEGE DUBLIN

25/53

Behaviour

The problem Wlth traces very well-known

‘Trace equivalence insensitive to presence of deadlocks‘

In CCS: a.b.0 =4 a.b.0 + a.0

In TCCS™: What constitutes a deadlock?
In TCCS™: What does insensitive to deadlock mean?

W TRINITY COLLEGE DUBLIN

26/53

Behaviour

The problem Wlth traces very well-known

‘Trace equivalence insensitive to presence of deadlocks‘

In CCS: a.b.0 =4 a.b.0 + a.0

In TCCS™: What constitutes a deadlock?
In TCCS™: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive
to deadlocks

» Rob J. van Glabbeek: The Linear Time-Branching Time
Spectrum. CONCUR 1990: and ater

Behaviour

The problem Wlth traces very well-known

‘Trace equivalence insensitive to presence of deadlocks‘

In CCS: a.b.0 =4 a.b.0 + a.0

In TCCS™: What constitutes a deadlock?
In TCCS™: What does insensitive to deadlock mean?

Lots of other possible behavioural equivalences: sensitive
to deadlocks

» Rob J. van Glabbeek: The Linear Time-Branching Time
Spectrum. CONCUR 1990: and ater

CONCUR 1990: The first ever CONCUR conference

CCS Bisimulations P ~pisim Q@

The largest relation over processes such that, if P &pisim @ then,
for every i € Act,

» PE p/ implies Q@

£ Q' such that P’ ~pism @'
» QL Q implies P £ P

! such that P/ bisim Q/ symmetrically

W TRINITY COL

27/53

LEGE DUBLIN

CCS Bisimulations P ~pisim Q@

The largest relation over processes such that, if P &pisim @ then,

for every u € Act;
» P £ P implies @ & Q' such that P’ ~pigim Q'
» Q£ Q implies P £ P’ such that P’ ~pisim @ symmetricaly

Trace version:

The largest relation over processes such that, if P &psm @ then,
for every s € Act”,

» P P implies @ = @' such that P’ ~pisim Q'
» Q= @ implies P = P’ such that P’ ~pigim Q' symmetrcally

W TRINITY COLLEGE DUBLIN

27/53

TCCS™: Bisimulations a suggestion

The largest relation over transactions such that, if P ~cpisim @
then, for s € Act™,

» P == P implies Q == @ such that P’ ~¢pisim Q'
» QES Q implies P == P’ such that P’ ~pisim Q'

W TRINITY COLLEGE DUBLIN

28/53

TCCS™: Bisimulations a suggestion

The largest relation over transactions such that, if P ~cpisim @
then, for s € Act™,

» P == P implies Q == @ such that P’ ~¢pisim Q'
» QES Q implies P == P’ such that P’ ~pisim Q'

Suspicions:

» In CCS: a.(b.® + ¢.0) #pisim a-b.0 + a.c.0

» In TCCS™:
[a.(b.co + c.co) >k O] ~cpisim [a.-b.co + a.c.co) >y 0]

TCCS™: Bisimulations a suggestion

The largest relation over transactions such that, if P ~cpisim @
then, for s € Act™,

» P == P implies Q == @ such that P’ ~¢pisim Q'
» QES Q implies P == P’ such that P’ ~pisim Q'

Suspicions:

» In CCS: a.(b.® + ¢.0) #pisim a-b.0 + a.c.0

» In TCCS™:
[a.(b.co + c.co) >k O] Xepisim [a-b.co + a.c.co) >y 0]

Question:
,
Should [a.(b.co + c.co) bk O] =, [a.b.co+ a.c.co >y 0]

Co-operating Transactions TransCCS Behaviour History bisimulations

Justifying Bisimulations

Robin Milner, Davide Sangiorgi: Barbed Bisimulation. ICALP 1992

We propose in this paper barbed bisimulation as a tool to

describe bisimulation-based equivalence uniformly for any

calculi possessing

(a) a reduction relation

(b) a convergency predicate which simply detects the
possibility of performing some observable action.

This opens interesting perspectives for the adoption of a

reduction semantics in process algebras. As a test-case

we prove that strong bisimulation of CCS coincides with

the congruence induced by barbed bisimulation.

W TRINITY COLLEGE DUBLIN

29/53

Behaviour

Justifying Bisimulations: Reduction closure

Requirement: A reduction relation P — @ between processes.

Definition:
A relation P ~pehay Q is reduction-closed if, whenever P ~pehay @,

(i) P —* P"implies @ —* Q' such that P’ ~pehay Q'
(i) @ =* @ implies P —* P’ such that P’ ~pehay Q'

Intuition:
P and @ must maintain the equivalent choice possibilities

W TRINITY COLLEGE DUBLIN

30/53

Justifying Bisimulations: Contextual equivalence : qaistionon s s)

Requirements:

(i) A collection of observation relations on processes: e.g. P | a

P can do the action a

(ii) a parallel operator on processes: e.g. P | Q

W TRINITY COL

31/53

LEGE DUBLIN

Behaviour

Justifying Bisimulations: Contextual equivalence : qaistionon s s)

Requirements:

(i) A collection of observation relations on processes: e.g. P | a

P can do the action a

(ii) a parallel operator on processes: e.g. P | Q

Definition: (Honda Yoshida)
P ~. Q is the largest relation which is

» preserved by parallel composition
» reduction closed

> preserves observations.

Remark:
P ~c+ Q is definable for many languages
W

31/53

LEGE DUBLIN

CCS: Justifying Bisimulations
Theorem: In CCS [P~ Q <= P ~bisim Q|

Behaviour

CCS: Justifying Bisimulations
Theorem: In CCS [P~ Q <= P ~bisim Q|

Significance:

» Bisimulations provide a sound and complete proof method for
contextual equivalence in CCS
» Variations on bisimulations are also sound and complete for

many languages

W TRINITY COLLEGE DUBLIN

32/53

Behaviour

CCS: Justifying Bisimulations
Theorem: In CCS [P~ Q <= P ~bisim Q|

Significance:

» Bisimulations provide a sound and complete proof method for
contextual equivalence in CCS
» Variations on bisimulations are also sound and complete for

many languages

Inconvenience:
In TCCS™: P cbisim Q does NOT Imp|y P ext Q cbisimulations are unsound

LEGE DUBLIN

W TRINITY COL

32/53

Behaviour

CCS: Justifying Bisimulations
Theorem: In CCS [P~ Q <= P ~bisim Q|

Significance:

» Bisimulations provide a sound and complete proof method for
contextual equivalence in CCS
» Variations on bisimulations are also sound and complete for

many languages

Inconvenience:
In TCCS™: P cbisim Q does NOT Imp|y P ext Q cbisimulations are unsound

Counter-example:
» [a.(b.co + c.co) >k O] ~Acbisim [a.b.co + a.c.co) >k 0]

> [a.(b.co+ c.co) bk O] #cxt [a.b.co+ a.c.co >y 0] o v

32/53

Behaviour

The inconvenience

P = [a.(b.co + c.co) >y 0] Q = [a.b.co + a.c.co >, 0]
> 'D#:cxt Q

W TRINITY COLLEGE DUBLIN

33/53

Behaviour

The inconvenience

P = [a.(b.co + c.co) >y 0] Q = [a.b.co + a.c.co >, 0]

> 'D#:cxt Q
> because P | [a.co bk 0] #cx Q| [a.co >k 0]

Behaviour

The inconvenience

P = [a.(b.co + c.co) >y 0] Q = [a.b.co + a.c.co >, 0]
> 'D#:cxt Q

> because P | [a.co bk 0] #cx Q| [a.co >k 0]

> because
» P|[a.co>k 0] — [b.co+ c.co >y 0] | [co >y, 0]

» Q| [3.cork 0] =*7

W TRINITY COLLEGE DUBLIN

33/53

Behaviour

The inconvenience

P = [a.(b.co + c.co) >y 0] Q = [a.b.co + a.c.co >, 0]
> 'D#:cxt Q

> because P | [a.co bk 0] #cx Q| [a.co >k 0]

> because
» P|[a.co>k 0] — [b.co+ c.co >y 0] | [co >y, 0]

» Q| [3.cork 0] =*7

Moral:

Internal tentative decision states matter

remember CCS: a.(b.0 + ¢.0) Zcxt a.b.0 + a.c.0

LEGE DUBLIN

W TRINITY COL

33/53

TCCS™ Challenge

Find a notion of bisimulation which characterises contextual
equivalence /o,

W TRINITY COLLEGE DUBLIN

34/53

TCCS™ Challenge

Find a notion of bisimulation which characterises contextual
equivalence /o,

Obstacles:

» some tentative states are relevant:
[a.(b.co + c.co) bk O] %o [a.b.co+ a.c.co >y 0]

» some tentative states are not relevant:
[a.(b.co+ c.0) g 0] ~c [a.b.co+ a.c.0) >y 0]

34/53

TCCS™ Challenge

Find a notion of bisimulation which characterises contextual
equivalence /o,

Obstacles:

» some tentative states are relevant:
[a.(b.co + c.co) bk O] %o [a.b.co+ a.c.co >y 0]

> some tentative states are not relevant:
[a.(b.co+ c.0) g 0] ~c [a.b.co+ a.c.0) >y 0]
History is important:

» record tentative actions

> |ater decide which actions were really relevant

34/53

Behaviour

History actions

. . k
> Tentative external action: R > P~ R, k(a) > P’ K fresh

» Internal action: R>P 5 R > P’
» housekeeping
» communication
» transaction commit/abort

35/53

Behaviour

History actions

. . k
> Tentative external action: R > P~ R, k(a) > P’ K fresh

» Internal action: R> P 5 R > P

» housekeeping
» communication
» transaction commit/abort

R:

> records tentative external actions taken
> records retrospectively if tentative actions become
> permanent

» or aborted

W TRINITY COLLEGE DUBLIN

35/53

Behaviour

History actions

. . k
> Tentative external action: R > P~ R, k(a) > P’ K fresh

» Internal action: R> P 5 R > P

» housekeeping
» communication
» transaction commit/abort

R:

> records tentative external actions taken
> records retrospectively if tentative actions become
> permanent

» or aborted

W TRINITY COLLEGE DUBLIN

35/53

Behaviour

Example e > [a.p.co >y O] | [b.g.co >y, 0] | [c.G.p.co >y, 0]

W TRINITY COLLEGE DUBLIN

36/53

Behaviour

Example e > [a.p.co >y O] | [b.g.co >y, 0] | [c.G.p.co >y, 0]
kl(a)
—_— fresh kq

ki(a) > [p.co >k, O] | [b.q.co >, 0] | [c.q.p.co >y 0]

Behaviour

Example e > [a.p.co >y O] | [b.g.co >y, 0] | [c.G.p.co >y, 0]
kl(a)
—_— fresh kq

ki(a) > [p.co >k, O] | [b.q.co >, 0] | [c.q.p.co >y 0]

ka(b)
—_— fresh ko

ki(a) ko(b) > [p.co >k, 0] | [g.co >k, 0] | [c.g.p.co >y O]

Behaviour

Example e > [a.p.co >y O] | [b.g.co >y, 0] | [c.G.p.co >y, 0]
kl(a)
—_— fresh kq

ki(a) > [p.co >k, O] | [b.q.co >, 0] | [c.q.p.co >y 0]

ka(b)
—_— fresh ko

ki(a) kao(b) > [p.co >k, 0] | [g.co >k, 0] | [c.g.p.co >y O]

ks(c)
— fresh k3

kl(a) kz(b) k3(C) > [[p.CO D>k, 0]] | [[q.co D>k, @]] | [[a.ﬁ.co D ks QH

Behaviour

Example e > [a.p.co >y O] | [b.g.co >y, 0] | [c.G.p.co >y, 0]
kl(a)
—_— fresh kq

ki(a) > [p.co >k, O] | [b.q.co >, 0] | [c.q.p.co >y 0]

ka(b)
—_— fresh ko

ki(a) kao(b) > [p.co >k, 0] | [g.co >k, 0] | [c.g.p.co >y O]

ks(c)
— fresh k3

kl(a) kz(b) k3(C) > [[p.CO D>k, 0]] | [[q.co D>k, @]] | [[a.ﬁ.co D ks QH
L> communication

ki(a) ka(b) ka(c) > [[p.co i, O] | [co >k, O] | [Pco >k, 0]

> [co by 0] | [co Dy O] | [co >y, O]

Behaviour

Example e > [a.p.co >y O] | [b.g.co >y, 0] | [c.G.p.co >y, 0]
kl(a)
—_— fresh kq

ki(a) > [p.co >k, O] | [b.q.co >, 0] | [c.q.p.co >y 0]

ka(b)
—_— fresh ko

ki(a) kao(b) > [p.co >k, 0] | [g.co >k, 0] | [c.g.p.co >y O]

fal), e b

ki(a) ko(b) k3(c) > [[p.co >k, 0] | [g.co bk, O] | [G.P.co >k, 0]
L> communication

ki(a) ka(b) ka(c) > [[p.co i, O] | [co >k, O] | [Pco >k, 0]
— communication

ks(a) ks(b) ks(c) > [[co Di; O] | [co >k O] | [co Dy, O]

>0]0]0

Behaviour

Example e > [a.p.co >y O] | [b.g.co >y, 0] | [c.G.p.co >y, 0]
kl(a)
—_— fresh kq

ki(a) > [p.co >k, O] | [b.q.co >, 0] | [c.q.p.co >y 0]

ka(b)
—_— fresh ko

ki(a) kao(b) > [p.co >k, 0] | [g.co >k, 0] | [c.g.p.co >y O]

ﬁ(—c)% fresh k3
kl(a) kz(b) k3(C) > [[p.CO D>k, 0]] | [[q.co D>k, @]] | [[a.ﬁ.co D ks QH
- communication
ki(a) ka(b) ka(c) > [[p.co i, O] | [co >k, O] | [Pco >k, 0]
L) communication
ks(a) ks(b) ks(c) > [[co pi; O] | [co >k, O] | [co Dy, O]
; distributed commit

ks(co) ks(co) ks(co) >0 |0 |0

What is recorded in R ?

R : | —4ie { k(2), k(co), k(ab) | ka transaction,aan action }

» [: an index set

Intuition: R > P

R(i) = k(a): k is the current name (in P) of transaction
used in ith external interaction

W TRINITY COLLEGE DUBLIN

37/53

What is recorded in R ?

R : | —4ie { k(2), k(co), k(ab) | ka transaction,aan action }

» [: an index set

Intuition: R > P

R(i) = k(a): k is the current name (in P) of transaction
used in ith external interaction

Note: Historical names are forgotten

W TRINITY COLLEGE DUBLIN

37/53

Behaviour

History actions: inference rules some

External actions

v

v

Commiting/aborting rules broadcasts

» Communication

Contextual rules

v

v

Housekeeping rules

W TRINITY COL

38/53

LEGE DUBLIN

Behaviour

History actions: inference rules

Tentative external actions: K fresh

P2 p in CCS

R [P o Q] X9 Run, k(a) & [P ox Q]

R > Z,LL,'.P,' @) R, k(a) > [[PJ | Cco Dy Z,UJ,'.P,']] pj = a

Intuition:
k is a fresh transaction in the environment requesting a
communication on a

W TRINITY COLLEGE DUBLIN

39/53

Behaviour

History actions: inference rules

Communication

R> P ﬂRak()DP'

K> Q — Kmk@) > Q
R.K>P|Q N Rom,Kro > P | Q

[ntuition:

» standard CCS communication rule

> histories need updating
B oot oy

40/53

History actions: Committing/Aborting

(r-cO)
p 3 p in CCS
RD[[PD;(Q]] ;cok 'R\cokl>P

Intuition:

» R \co k records that all tentative actions k(a) are now
permanent transforms every k(a) in R to k(co)

W TRINITY COLLEGE DUBLIN

41/53

History actions: Committing/Aborting

(r-cO)
p 3 p in CCS
RD[[PD;(Q]] ;cok R\cokDP

Intuition:

» R \co k records that all tentative actions k(a) are now
permanent transforms every k(a) in R to k(co)

Example:

k3(a) kz(b) k3(C) > [[CO.P Dy Q]] ‘ [[b.CO.R D>k, 0]] ’ [[CO.Q D ks 0]]
l>cok
k3(co) ka(b) k3(co) > P | [b.co.R >k, 0] | Q

History actions: Committing/Aborting

(r-cO)

(r-BcasT)

R>P Dok R > P

K> Q Dok K'> Q

REKD>P|Q Dok RVK > P Q
(R-IGNORE)

R>P L. xR > P
REK>P|Q Lk R,K>P|Q

k fresh to K > Q

Intuition:

> All components of the distributed transaction k must commit
2} simultaneously R o cousa oy

42/53

History bisimulations R> P ~pam K> Q

The largest relation over configurations such that, if
R > P ~pisim K > Q then, for every

» R>PLE R > P implies K> QL K/ > Q such that
R, > Ql Sbisim]C/ > Ql

P symmetrically K > Q é ,C/ > Q, |mp||eS

> Records R, K are consistent: they agree on committed
actions.

W TRINITY COL

43/53

LEGE DUBLIN

History bisimulations R> P ~pam K> Q

The largest relation over configurations such that, if
R > P ~pisim K > Q then, for every

» R>PLE R > P implies K> QL K/ > Q such that
R, > Ql Sbisim]C/ > Ql

P symmetrically K > Q é ,C/ > Q, |mp||eS

> Records R, K are consistent: they agree on committed
actions.

Intuition:
Permanent actions must match

Consistent: for every index i € I, R(i) = k(co) iff K(i) = k'(co)
B

43/53

A problem

[[a.b.co >k 0]] ext [[a.b.co + a.c.0 g% @]] difficult to prove
But P =[a.b.co >k 0] #pisim [a.b.co+a.c.0 >y 0] =Q

W TRINITY COLLEGE DUBLIN

44/53

A problem

[[a.b.co >k 0]] ext [[a.b.co + a.c.0 g% @]] difficult to prove
But P =[a.b.co >k 0] #pisim [a.b.co+a.c.0 >y 0] =Q

b e Q 29 k(a) > [c0 biy 0] 2D ky(a)ka(c) & [o54, 9]

s e P (a) > [bco by, 0] 2L 27

A problem

[[a.b.co >k 0]] ext [[a.b.co + a.c.0 g% @]] difficult to prove
But P =[a.b.co >k 0] #pisim [a.b.co+a.c.0 >y 0] =Q

b e Q 29 k(a) > [c0 biy 0] 2D ky(a)ka(c) & [o54, 9]

s e P (a) > [bco by, 0] 2L 27

A solution:
(x)

. . k
Allow free degenerate tentative actions: R > § —% R, k(ab) > S

A problem

[[a.b.co >k 0]] ext [[a.b.co + a.c.0 g% @]] difficult to prove
But P =[a.b.co >k 0] #pisim [a.b.co+a.c.0 >y 0] =Q

b e Q 29 k(a) > [c0 biy 0] 2D ky(a)ka(c) & [o54, 9]

s e P (a) > [bco by, 0] 2L 27

A solution:
k(x)

Allow free degenerate tentative actions: R > S —= R, k(ab) > S

Because: 4.2 k(o)
> ¢ > P———> ki(a)kz(ab) > [b.co >y, 0]

;ab kl(a)kg(ab) >0

> and ‘ ko(a)ko(b) & [0 ok, O] ~isim ki(a)ka(ab) & 0‘ W o ooy

44/53

History bisimulations

Justifying bisimulations

In TCCS™

P ~pisim @ iff P~ Q

History bisimulations give a sound and complete proof
method for contextual equivalence of transactions

Fossacs 2014

W TRINITY COL

45/53

LEGE DUBLIN

Inequivalent systems

In CCS:

» P=ac.(d0+e0)+aced Zy a(cd®+celd)=Q
> because P #pisim @
» because P and @ satisfy different behavioural properties

W TRINITY COLLEGE DUBLIN

46/53

Property logics

Inequivalent systems

In CCS:

» P=ac.(d0+e0)+aced Zy a(cd®+celd)=Q
> because P #pisim @
» because P and @ satisfy different behavioural properties

P = (a) [c]({(d) tr A (e) tr) while Q [~ (a) [c]((d) tr A (e) tr)

Property logics

Inequivalent systems

In CCS:

» P=ac.(d0+e0)+aced Zy a(cd®+celd)=Q
> because P #pisim @
» because P and @ satisfy different behavioural properties

P = (a) [c]({(d) tr A (e) tr) while Q [~ (a) [c]((d) tr A (e) tr)

In TCCS™:
P = [a.co bk, 0] | [b.co >k, 0]
Q =vp.p|[a.p.co.p by O] |[b.p.co.p >k, 0]
> P Eox Q
» because P #pisim @

> because 777 SRR

46/53

Property logics

In CCS: property logic HML

Properties: ¢ = (u) ¢ | - | Nien @i

Satisfaction:

» P ()¢ if PL Q, where Q = ¢
> P):/\{I'G/}éf |f

Well-known result:
P #pisim Q@ iff P = ¢, Q F~ ¢ for some property ¢ € HML

Intuition:
¢ is a reason for the different behaviour between P and @

In TCCS™: Why are P, Q different ?

P = [a.b.co >y 0] Q =vp.[a.co.p by, O] | [p-b.co >y, 0]

Property logics

In TCCS™: Why are P, Q different ?
P = [a.b.co >y 0] Q =vp.[a.co.p by, O] | [p-b.co >y, 0]

Intuition:

» P can perform tentative actions a, b in same transaction,
which can subsequently become permanent

» @ can only tentatively perform a, b in independent
transactions

W TRINITY COLLEGE DUBLIN

48/53

In TCCS™: Why are P, Q different ?

P = [a.b.co >y 0] Q =vp.[a.co.p by, O] | [p-b.co >y, 0]
Intuition:

» P can perform tentative actions a, b in same transaction,
which can subsequently become permanent

» @ can only tentatively perform a, b in independent
transactions

Intuition unsupported by current action semantics:

e p 10O ki(a) > [b.co >k, 0]

L0 ko (a)ka(b) > [beco b, 0]

W TRINITY COLLEGE DUBLIN

48/53

History is important
Recall R > P
» R: 1 — {k(a),k(co), k(ab) | ka transaction name }

» R(i) = k(a): k is the current name in P of ith interaction

History is important
Recall R > P
» R: 1 — {k(a),k(co), k(ab) | ka transaction name }
» R(i) = k(a): k is the current name in P of ith interaction

New Configurations: remember historic actions
H:; R > P where
» H equivalence relation over names
» H | ki ~ ky means ky, ko are the same transactions

» R(i) is the historic name used in ith interaction

W TRINITY COLLEGE DUBLIN

49/53

Property logics

History is important
Recall R > P
» R: 1 — {k(a),k(co), k(ab) | ka transaction name }

» R(i) = k(a): k is the current name in P of ith interaction

New Configurations: remember historic actions
H:; R > P where
» H equivalence relation over names
» H | ki ~ ky means ky, ko are the same transactions

» R(i) is the historic name used in ith interaction

Example:
e P MO 0t ki(a) o [beco bi O]
ko (b
O,k ko) ku(a)ko(b) & [co bk, O]

W TRINITY COLLEGE DUBLIN

49/53

In TCCS™: property logic trHML
Properties: ¢ == (k(a))® | (1) ¢ | Isco(k) | =¢ | Agiery ¢
Satisfaction:

s HiRe P E (k(a) o if iR P L H R/ > Q, where
IR QF 0
> E=kn~ K

» H;R> P = Isco(k) if 3i, R(i) = k'(co), H= k ~ K

50/53

| CeepeipUEEsE | WEEe® | Bewwen | WeeylSioets BeEylis
In TCCS™: property logic trHML
Properties: ¢ == (k(a)) ¢ | (1) ¢ | Isco(k) | ¢ | Agiery ¢i
Satisfaction:
s HiRe P E (k(a) o if iR P L H R/ > Q, where

»)R> QE ¢
> Elk~ K

» H;R> P = Isco(k) if 3i, R(i) = k'(co), H= k ~ K

Example:

P = [a.b.co >y 0] Q =vp.[a.p.co by, O] | [b.p.co >k, 0]

e>P = (k(a)) (k(b)) Isco(k)

e>Q
W TRINITY COLLEGE DUBLIN

50/53

In TCCS™: property logic trHML

Conjecture:
P %pisim Q iff P = ¢, Q [~ ¢ for some property ¢ € trHML

Example:
P = [a.co >y O] | [b.co >y, 0]
Q = vp.p|ap.co.p >k O] |[b.p.co.p >, 0]

In TCCS™: property logic trHML

Conjecture:
P %pisim Q iff P = ¢, Q [~ ¢ for some property ¢ € trHML

Example:
P = [a.co >y O] | [b.co >y, 0]
Q = vp.p|ap.co.p >k O] |[b.p.co.p >, 0]
P 777
Q I;& 777

In TCCS™: property logic trHML

Conjecture:
P %pisim Q iff P = ¢, Q [~ ¢ for some property ¢ € trHML

Example:
P = [a.co >y O] | [b.co >y, 0]
Q = vp.p|ap.co.p >k O] |[b.p.co.p >, 0]
P 777
Q I;& 777

In TCCS™: property logic trHML

Conjecture:
P %pisim Q iff P = ¢, Q [~ ¢ for some property ¢ € trHML

Example:
P = [a.co >y O] | [b.co >y, 0]
Q = vp.p|ap.co.p >k O] |[b.p.co.p >, 0]
P =
Q ¥ 17

P | (k(a)) (k(b)) Isco(k)
Q [~ (k(a)) (k(b)) Isco(k)
S TRINITY COLLEGE DUBLIN

Property logics

Some work done. More to do.

» Language design and implementation
» Behavioural semantics
» Decision procedures for equivalence
upcoming PhD thesis: Carlo Spaccasassi
» More expressive transaction constructs.
eg. nested transactions
» Variations
» Reversible programming languages
» Web services: long running transactions with compensations
>

W TRINITY COLLEGE DUBLIN

52/53

__ Co-operating Transactions _ TransCCS___ Behaviour ____History bisimulations _____ Property logics _
The end

THANKS

Joint work with Vasileois Koutavas, Carlo Spaccasassi, Edsko de
Vries

W TRINITY COLLEGE DUBLIN

53/53

	Co-operating Transactions what are they?
	TransCCS
	Behaviour
	History bisimulations
	Property logics

